Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 172: 109693, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33774323

RESUMO

225Ac is a valuable medical radionuclide for targeted α therapy, but 227Ac is an undesirable byproduct of an accelerator-based synthesis method under investigation. Sufficient detector sensitivity is critical for quantifying the trace impurity of 227Ac, with the 227Ac/225Ac activity ratio predicted to be approximately 0.15% by end-of-bombardment (EOB). Superconducting transition edge sensor (TES) microcalorimeters offer high resolution energy spectroscopy using the normal-to-superconducting phase transition to measure small changes in temperature. By embedding 225Ac production samples in a gold foil thermally coupled to a TES microcalorimeter we can measure the decay energies of the radionuclides embedded with high resolution and 100% detection efficiency. This technique, known as decay energy spectroscopy (DES), collapses several peaks from α decays into single Q-value peaks. In practice there are more complex factors in the interpretation of data using DES, which we will discuss herein. Using this technique we measured the EOB 227Ac impurity to be (0.142 ± 0.005)% for a single production sample. This demonstration has shown that DES is a useful tool for quantitative measurements of complicated spectra.


Assuntos
Actínio/química , Análise Espectral/métodos , Calorimetria/métodos , Temperatura
2.
J Phys Condens Matter ; 27(40): 405501, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26401640

RESUMO

We have studied the excited electronic structure of LaBr3(Ce) scintillator by soft x-ray spectroscopy such as x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES). The La 3d XAS and XES spectra of LaBr3(Ce) are compared with those of other La(3+) solids (LaF3, La2O3, and La metal). From this comparison, it turns out that the La 3d XAS and XES spectra from all the La(3+) solids considered here appear at almost the same energy, even though the corresponding binding energies of the 3d core holes determined by XPS (x-ray photoelectron spectroscopy) are very different. As a result, we argue that the atomic nature of the 3d94f¹ configuration created by 3d¹°4f° → 3d94f¹ x-ray absorption process in La(3+) solids is maintained via the localized 4 f (1) state, which screens the 3d core holes differently from one La(3+) solid to another.

3.
J Phys Condens Matter ; 27(18): 185501, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25894617

RESUMO

The electronic structure of the cerium-activated yttrium aluminum perovskite [YAP(Ce)] scintillator has been studied by core level x-ray spectroscopy and first-principles calculations. X-ray absorption and emission spectra at the oxygen K-edge of YAP(Ce) and CeO2 have been measured and compared with the calculated partial density of states. With the known band gap of CeO2, the measured oxygen K-edge absorption and emission spectra are used to construct a fixed relation between the valence and conduction bands of YAP and CeO2. This allows us to determine the fundamental band gap of YAP to be 8.1 ± 0.3 eV. A comparison between the cerium M4,5-edges x-ray absorption spectra of the YAP(Ce) and Ce model compounds (CeO2, CeF3, and Ce foils) then shows that the Ce activator is in the desired Ce(3+), with a small fraction of Ce(4+) due to oxidization at the surface. Finally, we determine that the ground state 4f(1) energy level of the Ce(3+) activator lies 1.8 ± 0.5 eV above the top of the valence band of the host YAP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...