Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 85(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31519665

RESUMO

To maintain the turgor pressure of the cell under high osmolarity, bacteria accumulate small organic compounds called compatible solutes, either through uptake or biosynthesis. Vibrio parahaemolyticus, a marine halophile and an important human and shellfish pathogen, has to adapt to abiotic stresses such as changing salinity. Vibrio parahaemolyticus contains multiple compatible solute biosynthesis and transporter systems, including the ectABC-asp_ect operon required for de novo ectoine biosynthesis. Ectoine biosynthesis genes are present in many halotolerant bacteria; however, little is known about the mechanism of regulation. We investigated the role of the quorum sensing master regulators OpaR and AphA in ect gene regulation. In an opaR deletion mutant, transcriptional reporter assays demonstrated that ect expression was induced. In an electrophoretic mobility shift assay, we showed that purified OpaR bound to the ect regulatory region indicating direct regulation by OpaR. In an aphA deletion mutant, expression of the ect genes was repressed, and purified AphA bound upstream of the ect genes. These data indicate that AphA is a direct positive regulator. CosR, a Mar-type regulator known to repress ect expression in V. cholerae, was found to repress ect expression in V. parahaemolyticus In addition, we identified a feed-forward loop in which OpaR is a direct activator of cosR, while AphA is an indirect activator of cosR Regulation of the ectoine biosynthesis pathway via this feed-forward loop allows for precise control of ectoine biosynthesis genes throughout the growth cycle to maximize fitness.IMPORTANCE Accumulation of compatible solutes within the cell allows bacteria to maintain intracellular turgor pressure and prevent water efflux. De novo ectoine production is widespread among bacteria, and the ect operon encoding the biosynthetic enzymes is induced by increased salinity. Here, we demonstrate that the quorum sensing regulators AphA and OpaR integrate with the osmotic stress response pathway to control transcription of ectoine biosynthesis genes in V. parahaemolyticus We uncovered a feed-forward loop wherein quorum sensing regulators also control transcription of cosR, which encodes a negative regulator of the ect operon. Moreover, our data suggest that this mechanism may be widespread in Vibrio species.


Assuntos
Fosfatase Ácida/genética , Diamino Aminoácidos/biossíntese , Óperon , Percepção de Quorum , Fatores de Transcrição/genética , Vibrio parahaemolyticus/genética , Proteínas de Bactérias/genética , Vias Biossintéticas , Regulação Bacteriana da Expressão Gênica , Vibrio parahaemolyticus/metabolismo
2.
J Bacteriol ; 199(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28264992

RESUMO

Pathogenicity islands (PAIs) are mobile integrated genetic elements that contain a diverse range of virulence factors. PAIs integrate into the host chromosome at a tRNA locus that contains their specific bacterial attachment site, attB, via integrase-mediated site-specific recombination generating attL and attR sites. We identified conserved recombination modules (integrases and att sites) previously described in choleragenic Vibrio cholerae PAIs but with novel cargo genes. Clustered regularly interspaced short palindromic repeat (CRISPR)-associated proteins (Cas proteins) and a type VI secretion system (T6SS) gene cluster were identified at the Vibrio pathogenicity island 1 (VPI-1) insertion site in 19 V. cholerae strains and contained the same recombination module. Two divergent type I-F CRISPR-Cas systems were identified, which differed in Cas protein homology and content. The CRISPR repeat sequence was identical among all V. cholerae strains, but the CRISPR spacer sequences and the number of spacers varied. In silico analysis suggests that the CRISPR-Cas systems were active against phages and plasmids. A type III secretion system (T3SS) was present in 12 V. cholerae strains on a 68-kb island inserted at the same tRNA-serine insertion site as VPI-2 and contained the same recombination module. Bioinformatics analysis showed that two divergent T3SSs exist among the strains examined. Both the CRISPR and T3SS islands excised site specifically from the bacterial chromosome as complete units, and the cognate integrases were essential for this excision. These data demonstrated that identical recombination modules that catalyze integration and excision from the chromosome can acquire diverse cargo genes, signifying a novel method of acquisition for both CRISPR-Cas systems and T3SSs.IMPORTANCE This work demonstrated the presence of CRISPR-Cas systems and T3SSs on PAIs. Our work showed that similar recombination modules can associate with different cargo genes and catalyze their incorporation into bacterial chromosomes, which could convert a strain into a pathogen with very different disease pathologies. Each island had the ability to excise from the chromosome as distinct, complete units for possible transfer. Evolutionary analysis of these regions indicates that they were acquired by horizontal transfer and that PAIs are the units of transfer. Similar to the case for phage evolution, PAIs have a modular structure where different functional regions are acquired by identical recombination modules.


Assuntos
Sistemas de Secreção Bacterianos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genes Bacterianos , Ilhas Genômicas , Sequências Repetitivas Dispersas , Vibrio cholerae/genética , Biologia Computacional , Variação Genética , Recombinação Genética , Homologia de Sequência , Vibrio cholerae/classificação
3.
Infect Immun ; 85(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28069817

RESUMO

Quorum sensing (QS) is a process by which bacteria alter gene expression in response to cell density changes. In Vibrio species, at low cell density, the sigma 54-dependent response regulator LuxO is active and regulates the two QS master regulators AphA, which is induced, and OpaR, which is repressed. At high cell density the opposite occurs: LuxO is inactive, and therefore OpaR is induced while AphA is repressed. In Vibrio parahaemolyticus, a significant enteric pathogen of humans, the roles of these regulators in pathogenesis are less known. We examined deletion mutants of luxO, opaR, and aphA for in vivo fitness using an adult mouse model. We found that the luxO and aphA mutants were defective in colonization compared to levels in the wild type. The opaR mutant did not show any defect in vivo Colonization was restored to wild-type levels in a luxO opaR double mutant and was also increased in an opaR aphA double mutant. These data suggest that AphA is important and that overexpression of opaR is detrimental to in vivo fitness. Transcriptome sequencing (RNA-Seq) analysis of the wild type and luxO mutant grown in mouse intestinal mucus showed that 60% of the genes that were downregulated in the luxO mutant were involved in amino acid and sugar transport and metabolism. These data suggest that the luxO mutant has a metabolic disadvantage, which was confirmed by growth pattern analysis using phenotype microarrays. Bioinformatics analysis revealed OpaR binding sites in the regulatory region of 55 carbon transporter and metabolism genes. Biochemical analysis of five representatives of these regulatory regions demonstrated direct binding of OpaR in all five tested. These data demonstrate the role of OpaR in carbon utilization and metabolic fitness, an overlooked role in the QS regulon.


Assuntos
Adaptação Fisiológica , Metabolismo Energético , Percepção de Quorum , Vibrio parahaemolyticus/fisiologia , Proteínas de Bactérias/genética , Sítios de Ligação , Transporte Biológico , Metabolismo Energético/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Mucosa Intestinal/microbiologia , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Transdução de Sinais
4.
J Bacteriol ; 198(5): 766-76, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26668266

RESUMO

UNLABELLED: Pathogenicity islands (PAIs) are mobile integrated genetic elements (MIGEs) that contain a diverse range of virulence factors and are essential in the evolution of pathogenic bacteria. PAIs are widespread among bacteria and integrate into the host genome, commonly at a tRNA locus, via integrase-mediated site-specific recombination. The excision of PAIs is the first step in the horizontal transfer of these elements and is not well understood. In this study, we examined the role of recombination directionality factors (RDFs) and their relationship with integrases in the excision of two PAIs essential for Vibrio cholerae host colonization: Vibrio pathogenicity island 1 (VPI-1) and VPI-2. VPI-1 does not contain an RDF, which allowed us to answer the question of whether RDFs are an absolute requirement for excision. We found that an RDF was required for efficient excision of VPI-2 but not VPI-1 and that RDFs can induce excision of both islands. Expression data revealed that the RDFs act as transcriptional repressors to both VPI-1- and VPI-2-encoded integrases. We demonstrated that the RDFs Vibrio excision factor A (VefA) and VefB bind at the attachment sites (overlapping the int promoter region) of VPI-1 and VPI-2, thus supporting this mode of integrase repression. In addition, V. cholerae RDFs are promiscuous due to their dual functions of promoting excision of both VPI-1 and VPI-2 and acting as negative transcriptional regulators of the integrases. This is the first demonstration of cross talk between PAIs mediated via RDFs which reveals the complex interactions that occur between separately acquired MIGEs. IMPORTANCE: Deciphering the mechanisms of pathogenicity island excision is necessary for understanding the evolution and spread of these elements to their nonpathogenic counterparts. Such mechanistic insight would assist in predicting the mobility of uncharacterized genetic elements. This study identified extensive RDF-mediated cross talk between two nonhomologous VPIs and demonstrated the dual functionality of RDF proteins: (i) inducing PAI excision and (ii) acting as transcriptional regulators. Findings from this study may be implicated in determining the mobilome contribution of other bacteria with multiple MIGEs.


Assuntos
Cromossomos Bacterianos/genética , Ilhas Genômicas/fisiologia , Recombinação Genética/fisiologia , Vibrio cholerae/genética , Vibrio cholerae/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli , Regulação Bacteriana da Expressão Gênica/fisiologia , Ilhas Genômicas/genética , Mutação , Plasmídeos , Vibrio cholerae/classificação
5.
Microbiol Spectr ; 3(5)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26542048

RESUMO

Similar to other genera and species of bacteria, whole genomic sequencing has revolutionized how we think about and address questions of basic Vibrio biology. In this review we examined 36 completely sequenced and annotated members of the Vibrionaceae family, encompassing 12 different species of the genera Vibrio, Aliivibrio, and Photobacterium. We reconstructed the phylogenetic relationships among representatives of this group of bacteria by using three housekeeping genes and 16S rRNA sequences. With an evolutionary framework in place, we describe the occurrence and distribution of primary and alternative sigma factors, global regulators present in all bacteria. Among Vibrio we show that the number and function of many of these sigma factors differs from species to species. We also describe the role of the Vibrio-specific regulator ToxRS in fitness and survival. Examination of the biochemical capabilities was and still is the foundation of classifying and identifying new Vibrio species. Using comparative genomics, we examine the distribution of carbon utilization patterns among Vibrio species as a possible marker for understanding bacteria-host interactions. Finally, we discuss the significant role that horizontal gene transfer, specifically, the distribution and structure of integrons, has played in Vibrio evolution.


Assuntos
Aliivibrio/classificação , Variação Genética , Genoma Bacteriano , Photobacterium/classificação , Filogenia , Vibrio/classificação , Aliivibrio/genética , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Evolução Molecular , Transferência Genética Horizontal , Genes Essenciais , Genes Reguladores , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Interações Hospedeiro-Patógeno , Humanos , Photobacterium/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Fator sigma/genética , Vibrio/genética
6.
Microbiology (Reading) ; 160(Pt 9): 1953-1963, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24913685

RESUMO

Heat-shock proteins are molecular chaperones essential for protein folding, degradation and trafficking. The human pathogen Vibrio vulnificus encodes a copy of the groESEL operon in both chromosomes and these genes share <80 % similarity with each other. Comparative genomic analysis was used to determine whether this duplication is prevalent among Vibrionaceae specifically or Gammaproteobacteria in general. Among the Vibrionaceae complete genome sequences in the database (31 species), seven Vibrio species contained a copy of groESEL in each chromosome, including the human pathogens Vibrio cholerae, Vibrio parahaemolyticus and V. vulnificus. Phylogenetic analysis of GroEL among the Gammaproteobacteria indicated that GroESEL-1 encoded in chromosome I was the ancestral copy and GroESEL-2 in chromosome II arose by an ancient gene duplication event. Interestingly, outside of the Vibrionaceae within the Gammaproteobacteria, groESEL chromosomal duplications were rare among the 296 genomes examined; only five additional species contained two or more copies. Examination of the expression pattern of groEL from V. vulnificus cells grown under different conditions revealed differential expression between the copies. The data demonstrate that groEL-1 was more highly expressed during growth in exponential phase than groEL-2 and a similar pattern was also found in both V. cholerae and V. parahaemolyticus. Overall these data suggest that retention of both copies of groESEL in Vibrio species may confer an evolutionary advantage.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Chaperoninas/biossíntese , Chaperoninas/genética , Expressão Gênica , Variação Genética , Vibrionaceae/genética , Vibrionaceae/metabolismo , Duplicação Gênica , Óperon
7.
Bacteriophage ; 2(3): 139-148, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275865

RESUMO

Bacteriophage genomes found in a range of bacterial pathogens encode a diverse array of virulence factors ranging from superantigens or pore forming lysins to numerous exotoxins. Recent studies have uncovered an entirely new class of bacterial virulence factors, called effector proteins or effector toxins, which are encoded within phage genomes that reside among several pathovars of Escherichia coli and Salmonella enterica. These effector proteins have multiple domains resulting in proteins that can be multifunctional. The effector proteins encoded within phage genomes are translocated directly from the bacterial cytosol into their eukaryotic target cells by specialized bacterial type three secretion systems (T3SSs). In this review, we will give an overview of the different types of effector proteins encoded within phage genomes and examine their roles in bacterial pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...