Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 116(18): 5559-67, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22512323

RESUMO

Raman spectra of high temperature carbonate melts are correlated with carbonate species modeled at 923 K using B3LYP/(6-311+G(2d,p)) density functional calculations. Species that are theoretically stable at 923 K include O(2-), O(2)(-), O(2)(2-), CO(3)(2-), C(2)O(6)(2-), CO(4)(-), CO(4)(2-), CO(4)(4-), CO(5)(2-), KCO(4)(-), LiCO(4)(-), KO(2)(-), LiO(2)(-), NaO(2)(-), KO(2), LiO(2), NaO(2), KCO(3)(-), LiCO(3)(-), and NaCO(3)(-). Triangular, linear, and bent forms are theoretically possible for KO(2)(-) and NaO(2)(-). Triangular and linear forms may exist for LiO(2)(-). Linear and triangular versions are theoretically possible for LiO(2)(-) and KO(2). A triangular version of NaO(2) may exist. The correlation between measured and theoretical Raman spectra indicate that monovalent cations are to be included in several of the species that produce Raman spectra.


Assuntos
Carbonatos/química , Teoria Quântica , Sais/química , Dióxido de Carbono/química , Modelos Moleculares , Conformação Molecular , Peróxidos/química , Análise Espectral Raman
2.
J Phys Chem B ; 113(7): 2031-41, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19161293

RESUMO

Raman and infrared spectra of trimethylsulfonium dicyanamide [(CH(3))(3)SN(CN)(2)] are reported and accurately reproduced by DFT methods (B3LYP and B3PW91), MP2, and MP3, and to a lesser extent by the RHF method. The (CH(3))(3)SN(CN)(2) ionic liquid forms two isomeric dimers that are of cyclic structure, one of which is 13 kcal/mol lower in energy than the other. Both isomeric cyclic pairs (versions 1 and 2), [(CH(3))(3)SN(CN)(2)](2), have the potential to further combine and form a common structure containing four pairs of (CH(3))(3)SN(CN)(2). This structure can then conceivably undergo a stacking procedure to form extended ionic liquid nanotubes of eight ionic liquids, [(CH(3))(3)SN(CN)(2)](8). The possible formation of gas phase ionic liquid clusters of two, four, and eight trimethylsulfonium dicyanamide ionic liquids is supported by highly exergonic free energy changes obtained from B3LYP/(6-311+G(d,p)) density functional calculations.


Assuntos
Simulação por Computador , Líquidos Iônicos/química , Modelos Químicos , Nitrilas/química , Compostos de Sulfônio/química , Gases/química , Estrutura Molecular , Espectrofotometria Infravermelho , Análise Espectral Raman
3.
J Phys Chem A ; 110(3): 868-74, 2006 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-16419983

RESUMO

A new method of obtaining molecular reorientational dynamics from 13C spin-lattice relaxation data of aromatic carbons in viscous solutions is applied to 13C relaxation data of both the cation and anion in the ionic liquid, 1-ethyl-3-methylimidazolium butanesulfonate ([EMIM]BSO3). 13C pseudorotational correlation times are used to calculate corrected maximum NOE factors from a combined isotropic dipolar and nuclear Overhauser effect (NOE) equation. These corrected maximum NOE factors are then used to determine the dipolar relaxation rate part of the total relaxation rate for each aromatic 13C nucleus in the imidazolium ring. Rotational correlation times are compared with viscosity data and indicate several [EMIM]BSO3 phase changes over the temperature range from 278 to 328 K. Modifications of the Stokes-Einstein-Debye (SED) model are used to determine molecular radii for the 1-ethyl-3-methylimidazolium cation. The Hu-Zwanzig correction yields a cationic radius that compares favorably with a DFT gas-phase calculation, B3LYP/(6-311+G(2d,p)). Chemical shift anisotropy values, Deltasigma, are obtained for the ring and immediately adjacent methylene and methyl carbons in the imidazolium cation and for the three carbon atoms nearest to the sulfonate group in the anion.

4.
J Phys Chem A ; 109(30): 6676-82, 2005 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16834019

RESUMO

A new method of obtaining molecular reorientational dynamics from 13C spin-lattice relaxation data of aromatic carbons in viscous solutions is applied to 13C relaxation data of the ionic liquid, 1-methyl-3-nonylimidazolium hexafluorophosphate ([MNIM]PF6). Spin-lattice relaxation times (13C) are used to determine pseudorotational correlation times for the [MNIM]PF6 ionic liquid. Pseudorotational correlation times are used to calculate corrected maximum NOE factors from a combined isotropic dipolar and nuclear Overhauser effect (NOE) equation. These corrected maximum NOE factors are then used to determine the dipolar relaxation rate part of the total relaxation rate for each aromatic 13C nucleus in the imidazolium ring. Rotational correlation times are compared with viscosity data and indicate several [MNIM]PF6 phase changes over the temperature range from 282 to 362 K. Modifications of the Stokes-Einstein-Debye (SED) model are used to determine molecular radii for the 1-methyl-3-nonylimidazolium cation. The Hu-Zwanzig correction yields a cationic radius that compares favorably with a DFT gas-phase calculation, B3LYP/(6-311+G(2d,p)). Chemical shift anisotropy values, delta sigma, are obtained for the ring and immediately adjacent methylene and methyl carbons in the imidazolium cation. The average delta sigma values for the imidazolium ring carbons are similar to those of pyrimidine in liquid crystal solutions.

5.
Magn Reson Chem ; 42(1): 71-5, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14745820

RESUMO

The ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) and 1-methyl-3-propylimidazolium tetrafluoroborate ([PMIM][BF4]) were studied by H,H-NOESY NMR using a cross-relaxation matrix analysis. Cross-peak intensities are seen to increase with increasing mixing time. Experimental and theoretical hydrogen-hydrogen distances are in agreement at short mixing times (50 ms). Mixing times longer than 50 ms result in an increasing contribution of spin diffusion that produces unrealistically short hydrogen-hydrogen distances. Gas-phase ab initio molecular structures are obtained using Hartree-Fock (HF) and density functional theory (B3LYP) methods at the 6311 + G(2d,p) basis set level. The hydrogen-hydrogen distances obtained from the theoretical structures are in reasonable agreement with those calculated from the cross-relaxation matrices.


Assuntos
Imidazóis/química , Íons/química , Espectroscopia de Ressonância Magnética/métodos , Marcadores de Spin , Difusão , Modelos Químicos , Estrutura Molecular , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...