Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 322(5902): 713-6, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18974346

RESUMO

Angrites are among the oldest known pristine basaltic meteorites and record the earliest stages of planet formation and differentiation. Our paleomagnetic analysis of three angrites found that they record a past magnetic field of approximately 10 microteslas on the angrite parent body extending from 4564 to at least 4558 million years ago. Because the angrite paleomagnetic record extends beyond the expected lifetime of the early circumstellar disk, these paleofields were probably generated internally on the angrite parent body, possibly by an early dynamo in a rapidly formed metallic core.

2.
Nature ; 435(7039): 198-201, 2005 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-15889090

RESUMO

Magnetic surveys of the martian surface have revealed significantly lower magnetic field intensities over the gigantic impact craters Hellas and Argyre than over surrounding regions. The reduced fields are commonly attributed to pressure demagnetization caused by shock waves generated during meteorite impact, in the absence of a significant ambient magnetic field. Lower than average magnetic field intensities are also observed above the Vredefort meteorite crater in South Africa, yet here we show that the rocks in this crater possess much higher magnetic intensities than equivalent lithologies found elsewhere on Earth. We find that palaeomagnetic directions of these strongly magnetized rocks are randomly oriented, with vector directions changing over centimetre length scales. Moreover, the magnetite grains contributing to the magnetic remanence crystallized during impact, which directly relates the randomization and intensification to the impact event. The strong and randomly oriented magnetization vectors effectively cancel out when summed over the whole crater. Seen from high altitudes, as for martian craters, the magnetic field appears much lower than that of neighbouring terranes, implying that magnetic anomalies of meteorite craters cannot be used as evidence for the absence of the planet's internally generated magnetic field at the time of impact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...