Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 8(3): 943-955, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36916021

RESUMO

Inexpensive and accurate tools for monitoring conditions in enclosed environments (through garments, bandages, tissue, etc.) have been a long-standing goal of medicine. Passive resonant sensors are a promising solution for such wearable health sensors as well as off-body diagnostics. They are simple circuits with inherent inductance and capacitance (LC tank) that have a measurable resonant frequency. Changes in local parameters, e.g., permittivity or geometry, effect inductance and capacitance which cause a resonant frequency shift response. This signal transduction has been applied to several biomedical applications such as intracranial pressure, hemodynamics, epidermal hydration, etc. Despite these many promising applications presented in the literature, resonant sensors still do not see widespread adoption in biomedical applications, especially as wearable or embedded sensing devices. This perspective highlights some of the current challenges facing LC resonant sensors in biomedical applications, such as positional sensitivity, and potential strategies that have been developed to overcome them. An outlook on adoption in medicine and health monitoring is presented, and a perspective is given on next steps for research in this field.


Assuntos
Bandagens , Capacitância Elétrica
2.
ACS Sens ; 7(3): 806-815, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35254055

RESUMO

The COVID-19 pandemic has emphasized the importance of widespread testing to control the spread of infectious diseases. The rapid development, scale-up, and deployment of viral and antibody detection methods since the beginning of the pandemic have greatly increased testing capacity. Desirable attributes of detection methods are low product costs, self-administered protocols, and the ability to be mailed in sealed envelopes for the safe analysis and subsequent logging to public health databases. Herein, such a platform is demonstrated with a screen-printed, inductor-capacitor (LC) resonator as a transducer and a toehold switch coupled with cell-free expression as the biological selective recognition element. In the presence of the N-gene from SARS-CoV-2, the toehold switch relaxes, protease enzyme is expressed, and it degrades a gelatin switch that ultimately shifts the resonant frequency of the planar resonant sensor. The gelatin switch resonator (GSR) can be analyzed through a sealed envelope allowing for assessment without the need for careful sample handling with personal protective equipment or the need for workup with other reagents. The toehold switch used in this sensor demonstrated selectivity to SARS-CoV-2 virus over three seasonal coronaviruses and SARS-CoV-1, with a limit of detection of 100 copies/µL. The functionality of the platform and assessment in a sealed envelope with an automated scanner is shown with overnight shipment, and further improvements are discussed to increase signal stability and further simplify user protocols toward a mail-in platform.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Pandemias , Serviços Postais , SARS-CoV-2/genética
3.
ACS Sens ; 6(1): 111-122, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33381967

RESUMO

This paper details a passive, inductor-capacitor (LC) resonant sensor embedded in a commercial dressing for low-cost, contact-free monitoring of a wound; this would enable tracking of the healing process while keeping the site closed and sterile. Spiral LC resonators were fabricated from flexible, copper-coated polyimide and interrogated using external reader antennas connected to a two-port vector network analyzer; the forward transmission scattering parameter (S21) magnitude was collected, and the resonant frequency (MHz) and the peak-to-peak amplitude of the resonant feature were identified. These increase during the healing process as the permittivity and conductivity of the tissue change. The sensor was first tested on gelatin-based tissue-mimicking phantoms that simulate layers of muscle, blood, fat, and skin at varying phases of wound healing. Finite element modeling was also used to verify the empirical results based on the expected variations in dielectric properties of the tissue. The performance of the resonant sensors for in vivo applications was investigated by conducting animal studies using canine patients that presented with a natural wound as well as a controlled cohort of rat models with surgically administered wounds. Finally, transfer functions are presented that relate the resonant frequency to wound size using an exponential model (R2 = 0.58-0.96). The next steps in sensor design and fabrication as well as the reading platform to achieve the goal of a universal calibration curve are then discussed.


Assuntos
Bandagens , Tecnologia sem Fio , Animais , Cães , Humanos , Ratos
4.
NPJ Digit Med ; 3: 62, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32377573

RESUMO

Sweat loss can help determine hydration status of individuals working in harsh conditions, which is especially relevant to those who wear thick personal protective equipment (PPE) such as firefighters. A wireless, passive, conformable sweat sensor sticker is described here that can be worn under and interrogated through thick clothing to simultaneously measure sweat loss volume and conductivity. The sticker consists of a laser-ablated, microfluidic channel and a resonant sensor transducer. The resonant sensor is wirelessly read with a handheld vector network analyzer coupled to two, co-planar, interrogation antennas that measure the transmission loss. A sweat proxy is used to fill the channels and it is determined that the sensor can orthogonally determine the sweat conductivity and volume filled in the channel via peak transmission loss magnitude and frequency respectively. A four-person study is then used to determine level of sensor variance caused by local tissue dielectric heterogeneity and sensor-reader orientation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...