Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 28(20): 2276-90, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25319828

RESUMO

Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in any of 15 FA genes responsible for processing DNA interstrand cross-links (ICLs). The ultimate outcome of the FA pathway is resolution of cross-links, which requires structure-selective nucleases. FA-associated nuclease 1 (FAN1) is believed to be recruited to lesions by a monoubiquitinated FANCI-FANCD2 (ID) complex and participates in ICL repair. Here, we determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5' flap DNA. All four domains of the right-hand-shaped PaFAN1 are involved in DNA recognition, with each domain playing a specific role in bending DNA at the nick. The six-helix bundle that binds the junction connects to the catalytic viral replication and repair (VRR) nuclease (VRR nuc) domain, enabling FAN1 to incise the scissile phosphate a few bases distant from the junction. The six-helix bundle also inhibits the cleavage of intact Holliday junctions. PaFAN1 shares several conserved features with other flap structure-selective nucleases despite structural differences. A clamping motion of the domains around the wedge helix, which acts as a pivot, facilitates nucleolytic cleavage. The PaFAN1 structure provides insights into how archaeal Holliday junction resolvases evolved to incise 5' flap substrates and how FAN1 integrates with the FA complex to participate in ICL repair.


Assuntos
Exodesoxirribonucleases/química , Modelos Moleculares , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/enzimologia , Domínio Catalítico , Cristalização , Exodesoxirribonucleases/metabolismo , Endonucleases Flap/química , Endonucleases Flap/metabolismo , Humanos , Ligação Proteica , Estrutura Terciária de Proteína
2.
Mol Cell Biol ; 23(13): 4728-37, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12808110

RESUMO

Drugs that produce covalent interstrand cross-links (ICLs) in DNA remain central to the treatment of cancer, but the cell cycle checkpoints activated by ICLs have received little attention. We have used the fission yeast, Schizosaccharomyces pombe, to elucidate the checkpoint responses to the ICL-inducing anticancer drugs nitrogen mustard and mitomycin C. First we confirmed that the repair pathways acting on ICLs in this yeast are similar to those in the main organisms studied to date (Escherichia coli, budding yeast, and mammalian cells), principally nucleotide excision repair and homologous recombination. We also identified and disrupted the S. pombe homologue of the Saccharomyces cerevisiae SNM1/PSO2 ICL repair gene and found that this activity is required for normal resistance to cross-linking agents, but not other forms of DNA damage. Survival and biochemical analysis indicated a key role for the "checkpoint Rad" family acting through the chk1-dependent DNA damage checkpoint in the ICL response. Rhp9-dependent phosphorylation of Chk1 correlates with G(2) arrest following ICL induction. In cells able to bypass the G(2) block, a second-cycle (S-phase) arrest was observed. Only a transient activation of the Cds1 DNA replication checkpoint factor occurs following ICL formation in wild-type cells, but this is increased and persists in G(2) arrest-deficient mutants. This likely reflects the fraction of cells escaping the G(2) damage checkpoint and arresting in the subsequent S phase due to ICL replication blocks. Disruption of cds1 confers increased resistance to ICLs, suggesting that this second-cycle S-phase arrest might be a lethal event.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , Proteínas Serina-Treonina Quinases , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Camptotecina/farmacologia , Sobrevivência Celular , Quinase do Ponto de Checagem 2 , Cisplatino/farmacologia , DNA/efeitos dos fármacos , DNA/efeitos da radiação , Dano ao DNA , Reparo do DNA , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Inibidores Enzimáticos/farmacologia , Fase G2 , Hidroxiureia/farmacologia , Mitomicina/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Fosforilação , Proteínas Quinases/metabolismo , Radiossensibilizantes/farmacologia , Recombinação Genética , Fase S , Proteínas de Schizosaccharomyces pombe , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...