Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Lett ; 351: 1-9, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34407455

RESUMO

Tebuconazole (TEB) is a chiral triazole fungicide worldwide employed to control plant pathogens and preserve wood. People can be exposed to TEB either through diet and occupational contamination. This work investigates the in vitro inhibitory potential of rac-TEB, S-(+)-TEB, and R-(-)-TEB over the main cytochrome P450 enzymes (CYP450) using human liver microsomes to predict TEB in vivo inhibition potential. The IC50 values showed that in vitro inhibition was enantioselective for CYP2C9, CYP2C19, and CYP2D6, but not for CYP3A4/5. Despite enantioselectivity, rac-TEB and its single enantiomers were always classified in the same category. The inhibition mechanisms and constants were determined for rac-TEB and it has shown to be a mixed inhibitor of CYP3A4/5 (Ki = 1.3 ± 0.3 µM, αKi = 3.2 ± 0.5 µM; Ki = 0.6 ± 0.3 µM, αKi = 1.3 ± 0.3 µM) and CYP2C9 (Ki = 0.7 ± 0.1 µM, αKi = 2.7 ± 0.5 µM), and a competitive inhibitor of CYP2D6 (Ki = 11.9 ± 0.7 µM) and CYP2C19 (Ki = 0.23 ± 0.02 µM), respectively, suggesting that in some cases, rac-TEB has a higher or comparable inhibitory potential than well-known strong inhibitors of CYP450 enzymes, especially for CYP2C9 and CYP2C19. In vitro-in vivo extrapolations (IVIVE) were conducted based on the results and data available in the literature about TEB absorption and metabolism. R1 values were estimated based on the Food and Drug Administration guideline and suggested that in a chronic oral exposure scenario considering the acceptable daily intake dose proposed by the European Food and Safety Authority, the hypothesis of rac-TEB to inhibit the activities of CYP3A4/5, CYP2C9, and CYP2C19 in vivo and cause pesticide-drug interactions cannot be disregarded.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Praguicidas/farmacologia , Triazóis/química , Triazóis/farmacologia , Inibidores das Enzimas do Citocromo P-450/química , Humanos , Estrutura Molecular , Praguicidas/química , Relação Estrutura-Atividade
2.
Chem Biol Interact ; 345: 109552, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34147487

RESUMO

Ethofumesate is a chiral herbicide that may display enantioselective behavior in humans. For this reason, the enantioselective potential of ethofumesate and its main metabolite ethofumesate-2-hydroxy to cause pesticide-drug interactions on cytochrome P450 forms (CYPs) has been evaluated by using human liver microsomes. Among the evaluated CYPs, CYP2C19 had its activity decreased by the ethofumesate racemic mixture (rac-ETO), (+)-ethofumesate ((+)-ETO), and (-)-ethofumesate ((-)-ETO). CYP2C19 inhibition was not time-dependent, but a strong inhibition potential was observed for rac-ETO (IC50 = 5 ± 1 µmol L-1), (+)-ETO (IC50 = 1.6 ± 0.4 µmol L-1), and (-)-ETO (IC50 = 1.8 ± 0.4 µmol L-1). The reversible inhibition mechanism was competitive, and the inhibition constant (Ki) values for rac-ETO (2.6 ± 0.4 µmol L-1), (+)-ETO (1.5 ± 0.2 µmol L-1), and (-)-ETO (0.7 ± 0.1 µmol L-1) were comparable to the Ki values of strong CYP2C19 inhibitors. Inhibition of CYP2C19 by ethofumesate was enantioselective, being almost twice higher for (-)-ETO than for (+)-ETO, which indicates that this enantiomer may be a more potent inhibitor of this CYP form. For an in vitro-in vivo correlation, the Food and Drug Administration's (FDA) guideline on the assessment of drug-drug interactions used in the early stages of drug development was used. The FDA's R1 values were estimated on the basis of the obtained ethofumesate Ki and distribution volume, metabolism, unbound plasma fraction, gastrointestinal and dermal absorption data available in the literature. The correlation revealed that ethofumesate probably inhibits CYP2C19 in vivo for both chronic (oral) and occupational (dermal) exposure scenarios.


Assuntos
Benzofuranos/química , Benzofuranos/farmacologia , Inibidores do Citocromo P-450 CYP2C19/química , Inibidores do Citocromo P-450 CYP2C19/farmacologia , Citocromo P-450 CYP2C19/metabolismo , Mesilatos/química , Mesilatos/farmacologia , Praguicidas/química , Praguicidas/farmacologia , Citocromo P-450 CYP2C19/química , Inibidores do Citocromo P-450 CYP2C19/metabolismo , Relação Dose-Resposta a Droga , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Estereoisomerismo
3.
Molecules ; 26(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557168

RESUMO

Codeine is derived from morphine, an opioid analgesic, and has weaker analgesic and sedative effects than the parent molecule. This weak opioid is commonly used in combination with other drugs for over-the-counter cough relief medication. Due to the psychoactive properties of opioid drugs, the easily obtained codeine often becomes subject to misuse. Codeine misuse has emerged as a concerning public health issue due to its associated adverse effects such as headache, nausea, vomiting, and hemorrhage. Thus, it is very important to develop reliable analytical techniques to detect codeine for both quality control of pharmaceutical formulations and identifying drug misuse in the community. This review aims to provide critical outlooks on analytical methods applicable to the determination of codeine.


Assuntos
Técnicas de Química Analítica/métodos , Codeína/análise , Codeína/química , Humanos
4.
Food Chem Toxicol ; 146: 111826, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33127494

RESUMO

Fenamiphos (FS) is a chiral organophosphate pesticide that is used to control nematodes in several crops. Enantioselective differences may be observed in FS activity, bioaccumulation, metabolism, and toxicity. Humans may be exposed to FS through occupational and chronic (food, water, and environmental) exposure. FS may cause undesirable CYP450 pesticide-drug interactions, which may impact human health. Here, the CYP450 isoforms involved in enantioselective FS metabolism were identified, and CYP450 inhibition by rac-FS, (+)-FS, and (-)-FS was evaluated to obtain reliable information on enantioselective FS risk assessment in humans. CYP3A4 and CYP2E1 metabolized FS enantiomers, and CYP2B6 may participate in rac-FS metabolism. In addition, rac-FS, (+)-FS, and (-)-FS were reversible competitive CYP1A2, CYP2C19, and CYP3A4/5 inhibitors. High stereoselective inhibition potential was verified; rac-FS and (-)-FS strongly inhibited and (+)-FS moderately inhibited CYP1A2. Stereoselective differences were also detected for CYP2C19 and CYP3A4/5, which were strongly inhibited by rac-FS, (+)-FS, and (-)-FS. Our results indicated a high potential for CYP450 drug-pesticide interactions, which may affect human health. The lack of stereoselective research on the effect of chiral pesticides on the activity of CYP450 isoforms highlights the importance of assessing the risks of such pesticides in humans.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Isoenzimas/metabolismo , Compostos Organofosforados/metabolismo , Praguicidas/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Interações Medicamentosas , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Compostos Organofosforados/toxicidade , Praguicidas/toxicidade , Proteínas Recombinantes
5.
Anal Chim Acta ; 1116: 70-90, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32389191

RESUMO

The use of paper microfluidics to perform chemical measurements for various analytical applications has gained interest over the last decade. One of the growing applications of these platforms is for the qualitative and quantitative determination of drugs. The low cost and self-pumping ability of paper microfluidics are attractive for developing analytical tools capable of on-site drug screening. This review aims to present the unique features of microfluidic paper-based analytical devices (µPADs) that offer advantages to pharmaceutical analysis and evaluate the state-of-the-art technologies and applications of the platform for drug analysis in research and real-world settings. The current challenges and potential future directions of the field are also highlighted.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Papel , Preparações Farmacêuticas/análise , Animais , Medicamentos Falsificados/análise , Contaminação de Alimentos/análise , Humanos , Técnicas Analíticas Microfluídicas/instrumentação
6.
J Pharm Biomed Anal ; 187: 113349, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32413833

RESUMO

Ethofumesate (ETO) is a chiral herbicide that is marketed as a racemic mixture in the European Union and the United States. The growing consumption of pesticides in the world, along with their presence in water and food, has increased human exposure to these chemicals. Another issue concerning these compounds is that each enantiomer of a chiral pesticide may interact with biomolecules differently. For this reason, this study aimed to investigate the in vitro metabolism of ethofumesate (the racemic mixture as well as the isolated enantiomers) by human liver microsomes (HLM) and to explore the in vitro-in vivo correlation. Before the kinetics was determined, the method was fully validated by evaluating its selectivity, linearity, precision, accuracy, carryover, and stability. All the evaluated parameters agreed with the European Medicines Agency guideline. The enzyme kinetic parameters and the in vitro-in vivo correlation demonstrated that there was no enantioselective difference for the metabolism and bioavailable fraction of each enantiomer. The enzyme kinetics was biphasic; the KM1 values were 15, 5.8, and 5.6 for rac-ETO, (+)-ETO, and (-)-ETO, respectively. The total in vitro intrinsic clearance was 0.10 mg mL min-1 mg-1 for rac-ETO and its enantiomers. The enantiomer (-)-ETO was only metabolized by CYP2C19, while (+)-ETO was metabolized by both CYP2C19 and CYP3A4. CYP2C19 polymorphism and/or inhibition may represent a risk for humans exposed to this pesticide.


Assuntos
Benzofuranos/metabolismo , Herbicidas/metabolismo , Mesilatos/metabolismo , Microssomos Hepáticos/metabolismo , Benzofuranos/química , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP3A/metabolismo , Herbicidas/química , Humanos , Técnicas In Vitro , Mesilatos/química , Reprodutibilidade dos Testes , Estereoisomerismo
7.
Toxicol In Vitro ; 65: 104820, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32142840

RESUMO

Seriniquinone is a secondary metabolite isolated from a rare marine bacterium of the genus Serinicoccus. This natural quinone is highlighted for its selective cytotoxic activity toward melanoma cancer cells, in which rapid metastatic properties are still a challenge for clinical treatment of malignant melanoma. The progress of seriniquinone as a promising bioactive molecule for drug development requires the assessment of its clinical interaction potential with other drugs. This study aimed to investigate the in vitro inhibitory effects of seriniquinone on the main human CYP450 isoforms involved in drug metabolism. The results showed strong inhibition of CYP1A2, CYP2E1 and CYP3A, with IC50 values up to 1.4 µM, and moderate inhibition of CYP2C19, with IC50 value >15 µM. Detailed experiments performed with human liver microsomes showed that the inhibition of CYP450 isoforms can be explained by competitive and non-competitive inhibition mechanisms. In addition, seriniquinone demonstrated to be an irreversible and time-dependent inhibitor of CYP1A2 and CYP3A. The low inhibition constants values obtained experimentally suggest that concomitant intake of seriniquinone with drug metabolized by these isoforms should be carefully monitored for adverse effects or therapeutic failure.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Quinonas/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Humanos , Microssomos Hepáticos/metabolismo
8.
Toxicol Lett ; 313: 196-204, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31278966

RESUMO

Fipronil is a chiral insecticide employed worldwide in crops, control of public hygiene and control of veterinary pests. Humans can be exposed to fipronil through occupational, food, and environmental contamination. Therefore, the risk assessment of fipronil in humans is important to protect human health. Fipronil sulfone is the major metabolite formed during fipronil metabolism by humans. Since the CYP450 enzymes are the main ones involved in drug metabolism, the evaluation of their inhibition by fipronil and its main metabolite is important to predict drug-pesticide interactions. The aim of this work was to investigate the inhibition effects of rac-fipronil, S-fipronil, R-fipronil and fipronil sulfone on the main human CYP450 isoforms. The results showed that CYP2D6 is the only CYP450 isoform inhibited by these xenobiotics. In addition, no enantioselective differences were observed in the inhibition of CYP450 isoforms by fipronil and its individuals' enantiomers. Rac-fipronil, S-fipronil and R-fipronil are moderate CYP2D6 inhibitors showing a competitive inhibition profile. On the other hand, the metabolite fipronil sulfone showed to be a strong inhibitor of CYP2D6 also by competitive inhibition. These results highlight the importance of metabolite evaluation on pesticide safety since the metabolism of fipronil into fipronil sulfone increases the risk of pesticide-drug interactions for drugs metabolized by CYP2D6.


Assuntos
Inibidores do Citocromo P-450 CYP2D6/toxicidade , Citocromo P-450 CYP2D6/metabolismo , Praguicidas/toxicidade , Pirazóis/toxicidade , Citocromo P-450 CYP2D6/química , Inibidores do Citocromo P-450 CYP2D6/química , Relação Dose-Resposta a Droga , Interações Medicamentosas , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Modelos Biológicos , Praguicidas/química , Conformação Proteica , Pirazóis/química , Medição de Risco , Relação Estrutura-Atividade
9.
Food Chem Toxicol ; 123: 225-232, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30385190

RESUMO

The chiral pesticide fipronil is employed as a racemic mixture to control pests. Although there are no enantioselective differences in the fipronil enantiomer activities toward target organisms, fipronil enantiomers may exhibit enantioselective differences in their bioaccumulation, toxicity, and metabolism toward non-target organisms, including humans. The present work aims to provide significant reliable enantioselective information concerning fipronil risk assessment in humans. For that, the in vitro metabolism of rac-fipronil, S-fipronil, and R-fipronil by human liver microsomes was evaluated, the in vivo enantioselective toxicokinetic parameters were predicted and the main CYP450 isoforms involved in the enantioselective metabolism were determined. The obtained results demonstrated that fipronil may undergo a clearance by the liver and it is exclusively metabolized by the CYP3A4 isoform. Although no significative stereoselective differences were observed, the results provide reliable information on fipronil risk assessment for humans.


Assuntos
Praguicidas/química , Praguicidas/metabolismo , Pirazóis/química , Pirazóis/metabolismo , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Humanos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Praguicidas/toxicidade , Pirazóis/toxicidade , Medição de Risco , Estereoisomerismo , Toxicocinética
10.
J Chem Ecol ; 44(12): 1158-1169, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30350228

RESUMO

Social insects are frequently observed in symbiotic association with bacteria that produce antimicrobial natural products as a defense mechanism. There is a lack of studies on the microbiota associated with stingless bees and their antimicrobial compounds. To the best of our knowledge, this study is the first to report the isolation of Paenibacillus polymyxa ALLI-03-01 from the larval food of the stingless bee Melipona scutellaris. The bacterial strain was cultured under different conditions and produced (L)-(-)-3-phenyllactic acid and fusaricidins, which were active against entomopathogenic fungi and Paenibacillus larvae. Our results indicate that such natural products could be related to colony protection, suggesting a defense symbiosis between P. polymyxa ALLI-03-01 and Melipona scutellaris.


Assuntos
Anti-Infecciosos/farmacologia , Abelhas/microbiologia , Fungos/efeitos dos fármacos , Paenibacillus polymyxa/metabolismo , Animais , Anti-Infecciosos/análise , Anti-Infecciosos/metabolismo , Abelhas/crescimento & desenvolvimento , Depsipeptídeos/análise , Depsipeptídeos/metabolismo , Depsipeptídeos/farmacologia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Lactatos/análise , Lactatos/metabolismo , Lactatos/farmacologia , Larva/microbiologia , Microbiota , Paenibacillus polymyxa/classificação , Paenibacillus polymyxa/genética , Paenibacillus polymyxa/isolamento & purificação , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
J Pharm Biomed Anal ; 147: 89-109, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28844369

RESUMO

The consumption of pesticides worldwide has been growing in recent decades, and consequently the exposure of humans and other animals to them as well. However, even though it is known that chiral pesticides can behave stereoselectively, the knowledge about the risks to human health and the environment is scarce. Among the pesticides registered to date, approximately 30% have at least one center of asymmetry, and just 7% of them are currently marketed as a pure stereoisomer or as an enriched mixture of the active stereoisomer. There are several in vitro, in vivo, and in silico models available to evaluate the enantioselective metabolism of chiral pesticides aiming ecotoxicological and risk assessment. Therefore, this paper intends to provide a critical view of the metabolism of chiral pesticides in non-target species, including humans, and discuss their implications, as well as, conduct a review of the analytical techniques employed for in vitro and in vivo metabolism studies of chiral pesticides.


Assuntos
Praguicidas/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Humanos , Praguicidas/química , Estereoisomerismo
12.
J Pharm Biomed Anal ; 145: 576-585, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28777969

RESUMO

Drug Delivery Systems (DDS) of known drugs are prominent candidates towards new and more-effective treatments of various infectious diseases as they may increase drug bioavailability, control drug delivery and target the site of action. In this sense, the encapsulation of Amphotericin B (AmB) in Nanostructured Lipid Carriers (NLCs) designed with pH-sensible phospholipids to target infectious tissues was proposed and suitable analytical methods were validated, as well as, proper nanoparticle characterization were conducted. Characterization assays by Dinamic Light Scattering (DLS) and Atomic Force Microscopy demonstrated spherical particles with nanometric size 268.0±11.8nm and Zeta Potential -42.5±1.5mV suggestive of important stability. DSC/TGA and FT-IR assessments suggested mechanical encapsulation of AmB. The AmB aggregation study indicated that the encapsulation provided AmB at the lowest cytotoxic form, polyaggregate. Analytical methods were developed and validated according to regulatory agencies in order to fast and assertively determine AmB in nanoparticle suspension and, in Drug Encapsulation Efficiency (EE%), release and stability studies. The quantification method for AmB in NLC suspension presented linearity in 5.05-60.60µgmL-1 range (y=0.07659x+0.05344) and for AmB in receptor solution presented linearity in 0.15-10.00µgmL-1 range (y=54609x+263.1), both with r≥0.999. EE% was approximately 100% and according to the release results, at pH 7.4, a sustained controlled profile was observed for up 46h. In the meantime, a micellar AmB solution demonstrated an instability pattern after 7h of contact with the medium. Degradation and release studies under acid conditions (infectious condition) firstly depicted a prominent degradation of AmB (raw-material), with 20.3±3.5% at the first hour, reaching 43.3±7.0% after 7h of study. Next, particles faster disruption in acid environment was evidenced by measuring the NLC size variation by DLS and by the loss of the bluish sheen, characteristic of the nanostructured system macroscopically observed. Finally, safety studies depicted that NLC-AmB presented reduced toxicity in fibroblast cells, corroborating with AmB aggregated form study. Therefore, an innovative AmB formulation was fully characterized and it is a new proposal for in vivo investigations.


Assuntos
Nanopartículas , Anfotericina B , Química Farmacêutica , Portadores de Fármacos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Planta Med ; 83(8): 737-745, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28073118

RESUMO

Artepillin C, a natural product present in the Brazilian green propolis, has several biological properties. Among these properties, the antitumor action of this product is noteworthy and makes it a promising drug candidate for the treatment of several types of cancer. This paper describes the in vitro metabolism of Artepillin C in rat and human liver microsomes. The rat model suggested a sigmoidal profile for the metabolism, adapted to the Hill's kinetic model. The enzymatic kinetic parameters were as follows: maximal velocity = 0.757 ± 0.021 µmol/mg protein/min, Hill coefficient = 10.90 ± 2.80, and substrate concentration at which half-maximal velocity of a Hill enzyme is achieved = 33.35 ± 0.55 µM. Based on these results, the calculated in vitro intrinsic clearance for Artepillin C was 16.63 ± 1.52 µL/min/mg protein. The in vitro metabolism assay conducted on the human model did not fit any enzymatic kinetic model. Two novel metabolites were formed in both mammal microsomal models and their chemical structures were elucidated for the first time. The main human cytochrome P450 isoforms involved in Artepillin C metabolism had been identified, and the results suggest a majority contribution of CYP2E1 and CYP2C9 in the formation of the two metabolites.


Assuntos
Microssomos Hepáticos/metabolismo , Fenilpropionatos/metabolismo , Animais , Antineoplásicos/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Humanos , Própole/química , Ratos , Ratos Sprague-Dawley
14.
Electrophoresis ; 37(20): 2678-2684, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27456073

RESUMO

A three phase hollow fiber liquid-phase microextraction technique combined with capillary electrophoresis was developed to quantify lamotrigine (LTG) in plasma samples. The analyte was extracted from 4.0 mL of a basic donor phase (composed of 0.5 mL of plasma and 3.5 mL of sodium phosphate solution pH 9.0) through a supported liquid membrane composed of 1-octanol immobilized in the pores of the hollow fiber, and to an acidic acceptor phase (hydrochloric acid solution pH 4.0) placed in the lumen of the fiber. The extraction was carried out for 30 min at 500 rpm. The eletrophoretic analysis was carried out in 130 mmol/L MES buffer, pH 5.0 with a constant voltage of +15 kV and 20°C. Sample injections were performed for 10 s, at a pressure of 0.5 psi. The detection was performed at 214 nm for both LTG and the internal standard lidocaine. Under the optimized conditions, the method showed a limit of quantification of 1.0 µg/mL and was linear over the plasmatic concentration range of 1.0-20.0 µg/mL. Finally, the validated method was applied for the quantification of LTG in plasma samples of epileptic patients.


Assuntos
Eletroforese Capilar/métodos , Epilepsia/tratamento farmacológico , Microextração em Fase Líquida/métodos , Triazinas/sangue , Humanos , Concentração de Íons de Hidrogênio , Lamotrigina , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Triazinas/uso terapêutico
15.
J Pharm Biomed Anal ; 61: 100-7, 2012 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-22230802

RESUMO

A high-performance liquid chromatographic method using polar organic mode was developed to analyze albendazole (ABZ), albendazole sulfone (ABZSO(2)) and the chiral and active metabolite albendazole sulfoxide (ABZSOX, ricobendazole) that was further applied in stereoselective fungal biotransformation studies. The chromatographic separation was performed on a Chiralpak AS column using acetonitrile:ethanol (97:3, v/v) plus 0.2% triethylamine and 0.2% acetic acid as the mobile phase at a flow rate of 0.5 mL min(-1). The present study employed hollow fiber liquid-phase microextraction as sample preparation. The method showed to be linear over the concentration range of 25-5000 ng mL(-1) for each ABZSOX enantiomer, 200-10,000 ng mL(-1) for ABZ and 50-1000 ng mL(-1) for ABZSO(2) metabolite with correlation coefficient (r)>0.9934. The mean recoveries for ABZ, rac-ABZSOX and ABZSO(2) were, respectively, 9%, 33% and 20% with relative standard deviation below 10%. Within-day and between-day precision and accuracy assays for these analytes were studied at three concentration levels and were lower than 15%. This study opens the door regarding the possibility of using fungi in obtaining of the active metabolite ricobendazole. Nigrospora sphaerica (Sacc.) E. W. Mason (SS67), Pestalotiopsis foedans (VR8), Papulaspora immersa Hotson (SS13) and Mucor rouxii were able to stereoselectively metabolize ABZ into its chiral metabolite. Among them, the fungus Mucor rouxii was the most efficient in the production of (+)-ABZSOX.


Assuntos
Albendazol/análogos & derivados , Albendazol/metabolismo , Ascomicetos/metabolismo , Albendazol/química , Ascomicetos/química , Biotransformação/fisiologia , Cromatografia Líquida de Alta Pressão/métodos , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...