Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 18260, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521879

RESUMO

Increasing evidence suggests that agricultural intensification is a threat to many groups of soil biota, but how the impacts of land-use intensity on soil organisms translate into changes in comprehensive soil interaction networks remains unclear. Here for the first time, we use environmental DNA to examine total soil multi-trophic diversity and food web structure for temperate agroecosystems along a gradient of land-use intensity. We tested for response patterns in key properties of the soil food webs in sixteen fields ranging from arable crops to grazed permanent grasslands as part of a long-term management experiment. We found that agricultural intensification drives reductions in trophic group diversity, although taxa richness remained unchanged. Intensification generally reduced the complexity and connectance of soil interaction networks and induced consistent changes in energy pathways, but the magnitude of management-induced changes depended on the variable considered. Average path length (an indicator of food web redundancy and resilience) did not respond to our management intensity gradient. Moreover, turnover of network structure showed little response to increasing management intensity. Our data demonstrates the importance of considering different facets of trophic networks for a clearer understanding of agriculture-biodiversity relationships, with implications for nature-based solutions and sustainable agriculture.

2.
Sci Total Environ ; 697: 134098, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31476507

RESUMO

Liming is a common agricultural practice for improving acidic soils, but the addition of liming materials may also promote soil carbon dioxide (CO2) emissions, with adverse effects for climate regulation. In grasslands, current understanding of liming impacts on greenhouse gas emissions is limited by a lack of field data on liming and soil respiration. Here we used a two-year field trial and in situ chamber measurements to evaluate the effects of repeated, low-level liming on soil CO2 emissions from an acidic managed grassland with high soil organic matter content. Soil pH, temperature and moisture were measured during the experiment, as well as microbial and plant biomass, in order to assess possible liming-induced changes to drivers of grassland carbon cycling. Soil CO2 emissions showed significant variation during the two-year study, driven primarily by fluctuations in soil temperature. Soil respiration rates were unaffected by liming treatment, despite significant lime-induced increases in soil pH. Liming was associated with a decrease in biomass produced per gram nitrogen, as well as a decrease in forage C:N in the second year and transient decreases in microbial C:N, but neither plant nor microbial biomass showed significant responses to liming addition. Collectively, our results suggest that positive effects of low-level liming on plants and soil are not offset by increases in soil CO2 emissions in situ, highlighting the potential for sustainable liming practices in fertilized grasslands.


Assuntos
Agricultura/métodos , Monitoramento Ambiental , Fertilizantes , Pradaria , Compostos de Cálcio , França , Gases de Efeito Estufa , Óxidos , Solo/química
3.
Oecologia ; 178(2): 329-38, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25783490

RESUMO

Recent work suggests that soil nutrient heterogeneity may modulate plant responses to drivers of global change, but interactions between N heterogeneity and changes in rainfall regime remain poorly understood. We used a model grassland system to investigate the interactive effects of N application pattern (homogeneous, heterogeneous) and precipitation-magnitude manipulation during the growing season (control, +50 % rainfall, -50 % rainfall) on aboveground biomass and plant community dominance patterns. Our study resulted in four major findings: patchy N addition increased within-plot variability in plant size structure at the species level, but did not alter total aboveground biomass; patchy N addition increased community dominance and caused a shift in the ranking of subordinate plant species; unlike community-level biomass, plant species differed in their biomass response to the rainfall treatments; and neither aboveground biomass nor community dominance showed significant interactions between N pattern and rainfall manipulation, suggesting that grassland responses to patchy N inputs are insensitive to water addition or rainfall reduction in our temperate study system. Overall, our results indicate that the spatial pattern of N inputs has greater effects on species biomass variability and community dominance than on aboveground production. These short-term changes in plant community structure may have significant implications for longer-term patterns of vegetation dynamics and plant-soil feedbacks. Moreover our results suggest that the magnitude of precipitation during the growing season plays a limited role in grassland responses to heterogeneous organic N inputs, emphasizing the need to consider other components of precipitation change in future heterogeneity studies.


Assuntos
Pradaria , Nitrogênio/metabolismo , Fenômenos Fisiológicos Vegetais , Chuva , Biomassa , Plantas/metabolismo , Estações do Ano , Solo/química
4.
Oecologia ; 168(3): 761-71, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21935663

RESUMO

Productivity-diversity relationships are routinely described mainly in terms of species richness. However, these relationships can be affected by the functional strategy and physiological plasticity characterizing each species as they respond to environment and management changes. This study, therefore, aimed to analyze species interactions in grass communities presenting the same number of species (n = 6) but different growth strategies, and the impact on community productivity across several forms of field management (two different fertilizer application rates, i.e. 120 and 360 kg N ha(-1) year(-1), and two cutting frequencies, i.e. 3 and 6 cuts per year). For this purpose, we applied the tripartite partitioning method introduced for the analysis of biodiversity effects (BE). Grass species were cultivated on small plots (4.2 m(2)) in both mixtures and monocultures. Different management regimes altered both net BE and its component effects: dominance and potential for complementarity. A higher cutting frequency significantly reduced net BE, via a reduction in dominance effect. We found that increased N supply could either increase or decrease complementary effect according to grass mixture composition, i.e. species strategy. Regardless of management intensity, net BE was in general significantly positive especially when including individual species-specific plasticity effects. We conclude that a combination of different grasses has a positive effect on community biomass. Furthermore, both the functional strategy and the functional plasticity of component species play an important role in the intensity of BE. Therefore, biological mechanisms leading to enhanced biomass in six-grass communities are as effective for productivity as management conditions.


Assuntos
Poaceae/fisiologia , Animais , Biodiversidade , França , Nitrogênio/metabolismo , Poaceae/crescimento & desenvolvimento , Dinâmica Populacional , Especificidade da Espécie
5.
Ann Bot ; 105(6): 957-65, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20354073

RESUMO

BACKGROUND AND AIMS: Although plant functional traits (PFTs) appear to be important indicators of species' responses to land use changes, there is no clear understanding of how the variations in traits and their plasticity determine variations in species performance. This study investigated the role of functional shoot traits and their plasticity for variation in above-ground net primary productivity (ANPP) due to changes in N supply and in cutting frequency for 13 native perennial C(3) grass species. METHODS: Monocultures of the grass species were grown in a fully factorial block design combining plant species, cutting frequency and N supply as factors. KEY RESULTS: Four major trait associations were obtained by reducing the dimensions of 14 PFTs with a principal component analysis (PCA).Variations in species' productivity in response to an increase in cutting frequency was mainly explained by traits linked to the first PCA axis, opposing high plant stature from lower shoot cellulose and lignin contents and high leaf N content. Variation in species productivity in response to change in N supply was mainly explained by a set of predictor variables combining traits (average flowering date) and a trait's plasticity (tiller density per unit land area and leaf dry matter content, i.e. mg dry matter g fresh mass(-1)). These traits involved are linked to the second PCA axis ('nutrient acquisition-conservation'), which opposes distinct strategies based on response to nutrient supply. CONCLUSIONS: Variations in ANPP of species in response to an increase in cutting frequency and a decrease in N supply are controlled by a group of traits, rather than by one individual trait. Incorporating plasticity of the individual traits into these trait combinations was the key to explaining species' productivity responses, accounting for up to 89 % of the total variability in response to the changes in N supply.


Assuntos
Biodiversidade , Fotossíntese/fisiologia , Poaceae/fisiologia , Biodegradação Ambiental , Clima , Ecossistema , Flores/fisiologia , Fenótipo , Folhas de Planta/fisiologia , Brotos de Planta/fisiologia , Caules de Planta/fisiologia , Dinâmica Populacional , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...