Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 35(Pt 5): 1329-33, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17956344

RESUMO

Oncogenic mutations in the BRAF gene are detected in approximately 7% of human cancer samples with a particularly high frequency of mutation in malignant melanomas. Over 40 different missense BRAF mutations have been found, but the vast majority (>90%) represent a single nucleotide change resulting in a valine-->glutamate mutation at residue 600 ((V600E)BRAF). In cells cultured in vitro, (V600E)BRAF is able to stimulate endogenous MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] and ERK phosphorylation leading to an increase in cell proliferation, cell survival, transformation, tumorigenicity, invasion and vascular development. Many of these hallmarks of cancer can be reversed by treatment of cells with siRNA (small interfering RNA) to BRAF or by inhibiting MEK, indicating that BRAF and MEK are attractive therapeutic targets in cancer samples with BRAF mutations. In order to fully understand the role of oncogenic BRAF in cancer development in vivo as well as to test the in vivo efficacy of anti-BRAF or anti-MEK therapies, GEMMs (genetically engineered mouse models) have been generated in which expression of oncogenic BRaf is conditionally dependent on the Cre recombinase. The delivery/activation of the Cre recombinase can be regulated in both a temporal and spatial manner and therefore these mouse models can be used to recapitulate the somatic mutation of BRAF that occurs in different tissues in the development of human cancer. The data so far obtained following Cre-mediated activation in haemopoietic tissue and the lung indicate that (V600E)BRAF mutation can drive tumour initiation and that its primary effect is to induce high levels of cyclin D1-mediated cell proliferation. However, hallmarks of OIS (oncogene-induced senescence) are evident that restrain further development of the tumour.


Assuntos
Modelos Animais de Doenças , Neoplasias Experimentais/genética , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Camundongos , Mutação
2.
Oncogene ; 25(42): 5726-40, 2006 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-16652152

RESUMO

Cancer cells can invade three-dimensional matrices by distinct mechanisms, recently defined by their dependence on extracellular proteases, including matrix metalloproteinases. Upon treatment with protease inhibitors, some tumour cells undergo a 'mesenchymal to amoeboid' transition that allows invasion in the absence of pericellular proteolysis and matrix degradation. We show here that in HT1080 cells, this transition is associated with weakened integrin-dependent adhesion, consistently reduced cell surface expression of the alpha2beta1 integrin collagen receptor and impaired signalling downstream, as judged by reduced autophosphorylation of focal adhesion kinase (FAK). On examining cancer cells that use defined invasion strategies, we show that distinct from mesenchymal invasion, amoeboid invasion is independent of intracellular calpain 2 proteolytic activity that is usually needed for turnover of integrin-linked adhesions during two-dimensional planar migration. Moreover, an inhibitor of Rho/ROCK signalling, which specifically impairs amoeboid-like invasion, restores cell surface expression of alpha2beta1 integrin, downstream FAK autophosphorylation and calpain 2 sensitivity--features of mesenchymal invasion. These findings link weakened integrin function to a lack of requirement for calpain 2-mediated integrin adhesion turnover during amoeboid invasion. In keeping with the need for integrin adhesion turnover, mesenchymal invasion is uniquely sensitive to Src inhibitors. Thus, the need for a major pathway that controls integrin adhesion turnover defines and distinguishes cancer cell invasion strategies.


Assuntos
Calpaína/metabolismo , Integrinas/fisiologia , Quinases da Família src/metabolismo , Sequência de Bases , Calpaína/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Adesão Celular , Linhagem Celular Tumoral , Fibrossarcoma/patologia , Citometria de Fluxo , Humanos , Neoplasias Pulmonares/patologia , Mesoderma/enzimologia , Mesoderma/fisiologia , Mutação de Sentido Incorreto , Invasividade Neoplásica , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Quinases da Família src/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...