Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 685: 1160-1168, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31390706

RESUMO

The knowledge of biogeochemical mechanisms involved in soil organic carbon (SOC) storage is crucial to control its release to the atmosphere. In particular, the chemical composition of soil organic matter (SOM) plays an important role in the performance of the C storage and resilience in soils. The structural information provided by infrared spectroscopy (IR) of soil humic acid (HA) was used in the assessment of the C storage potential of 35 Spanish soils. Partial least squares (PLS) regression using the intensities of the points of the IR spectra of the HAs (4000-400 cm-1) as descriptors shows that a relationship exists between IR spectral pattern and the SOC content. This was also the case for E4 (humification index based on HA optical density at 465 nm). In addition, the chemical characteristics of the HAs correlated with the SOC levels were identified from digital data treatments of the IR spectra. Additional application of principal component analysis (PCA) and multidimensional scaling (MDS) suggested that bands assigned to carboxyl and amide structures were characteristic in HAs from soils with low C content, whereas HA spectra from soils with high C levels showed a conspicuous band pattern suggesting structural units of lignin from slightly transformed plant residues. The spectral profiles were analyzed in detail by an approach based on digital subtraction of IR spectra obtained by averaging those from HAs extracted from soils in the upper and lower quartiles of the SOC distribution. The results showed that significant relationships exist between the molecular composition of HAs and SOC levels and E4 values in a way in which aromatic, carboxyl and amide groups were predominant in HAs from soils with low SOC content, whereas lignin-derived structures were more characteristic of HAs from soils with high SOC content.

2.
J Chromatogr A ; 1508: 130-137, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28610797

RESUMO

The variable extent to which environmental factors are involved in soil carbon storage is currently a subject of controversy. In fact, justifying why some soils accumulate more organic matter than others is not trivial. Some abiotic factors such as organo-mineral associations have classically been invoked as the main drivers for soil C stabilization. However, in this research indirect evidences based on correlations between soil C storage and compositional descriptors of the soil organic matter are presented. It is assumed that the intrinsic structure of soil organic matter should have a bearing in the soil carbon storage. This is examined here by focusing on the methoxyphenols released by direct pyrolysis from a wide variety of topsoil samples from continental Mediterranean ecosystems from Spain with different properties and carbon content. Methoxyphenols are typical signature compounds presumptively informing on the occurrence and degree of alteration of lignin in soils. The methoxyphenol assemblages (12 major guaiacyl- and syringyl-type compounds) were analyzed by pyrolysis-gas chromatography-mass spectrometry. The Shannon-Wiener diversity index was chosen to describe the complexity of this phenolic signature. A series of exploratory statistical analyses (simple regression, partial least squares regression, multidimensional scaling) were applied to analyze the relationships existing between chemical and spectroscopic characteristics and the carbon content in the soils. These treatments coincided in pointing out that significant correlations exist between the progressive molecular diversity of the methoxyphenol assemblages and the concentration of organic carbon stored in the corresponding soils. This potential of the diversity in the phenolic signature as a surrogate index of the carbon storage in soils is tentatively interpreted as the accumulation of plant macromolecules altered into microbially reworked structures not readily recognized by soil enzymes. From a quantitative viewpoint, the partial least squares regression models exclusively based on total abundances of the 12 major methoxyphenols were especially successful in forecasting soil carbon storage.


Assuntos
Carbono/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Fenóis/química , Solo/química , Lignina/química , Plantas/química , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...