Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869232

RESUMO

Maintaining genetic diversity in cultured shellfish can be challenging due to high variance in individual reproductive success, founder effects, and rapid genetic drift, but is important to retain adaptive potential and avoid inbreeding depression. To support broodstock management and selective breeding in cultured Pacific oysters (Crassostrea (Magallana) gigas), we developed an amplicon panel targeting 592 genomic regions and SNP variants with an average of 50 amplicons per chromosome. Target SNPs were selected based on elevated observed heterozygosity or differentiation in Pacific oyster populations in British Columbia, Canada. The use of the panel for parentage applications was evaluated using multiple generations of oysters from a breeding program on Vancouver Island, Canada (n = 181) and families selected for Ostreid herpesvirus-1 resistance from the Molluscan Broodstock Program in Oregon, USA (n = 136). Population characterization was evaluated using wild, naturalized, farmed, or hatchery oysters sampled throughout the Northern Hemisphere (n = 190). Technical replicates showed high genotype concordance (97.5%; n = 68 replicates). Parentage analysis found suspected pedigree and sample handling errors, demonstrating the panel's value for quality control in breeding programs. Suspected null alleles were identified and found to be largely population dependent, suggesting population-specific variation impacting target amplification. Null alleles were identified using existing data without the need for pedigree information, and once they were removed, assignment rates increased to 93.0% and 86.0% of possible assignments in the two breeding program datasets. A pipeline for analyzing the amplicon sequence data from sequencer output, amplitools, is also provided.

2.
J Bacteriol ; 187(17): 6031-8, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16109944

RESUMO

In nitrogen-limiting conditions, approximately 10% of the vegetative cells in filaments of the cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 differentiate into nitrogen-fixing heterocysts. During the late stages of heterocyst differentiation, three DNA elements, each embedded within an open reading frame, are programmed to excise from the chromosome by site-specific recombination. The DNA elements are named after the genes that they interrupt: nifD, fdxN, and hupL. The nifD and fdxN elements each contain a gene, xisA or xisF, respectively, that encodes the site-specific recombinase required for programmed excision of the element. Here, we show that the xisC gene (alr0677), which is present at one end of the 9,435-bp hupL element, is required for excision of the hupL element. A strain in which the xisC gene was inactivated showed no detectable excision of the hupL element. hupL encodes the large subunit of uptake hydrogenase. The xisC mutant forms heterocysts and grows diazotrophically, but unlike the wild type, it evolved hydrogen gas under nitrogen-fixing conditions. Overexpression of xisC from a plasmid in a wild-type background caused a low level of hupL rearrangement even in nitrogen-replete conditions. Expression of xisC in Escherichia coli was sufficient to produce rearrangement of an artificial substrate plasmid bearing the hupL element recombination sites. Sequence analysis indicated that XisC is a divergent member of the phage integrase family of recombinases. Site-directed mutagenesis of xisC showed that the XisC recombinase has functional similarity to the phage integrase family.


Assuntos
Anabaena/metabolismo , Proteínas de Bactérias/genética , Oxirredutases/genética , Recombinases/genética , Anabaena/genética , Sequência de Bases , Cromossomos Bacterianos/genética , DNA Bacteriano/genética , Deleção de Genes , Teste de Complementação Genética , Plasmídeos/genética , Reação em Cadeia da Polimerase , Mapeamento por Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...