Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 2): 124876, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182618

RESUMO

This work aimed at studying the effect of molecular weight (MW) and deacetylation degree (DD) of chitosan on the quercetin bioaccessibility encapsulated in alginate/chitosan-coated zein nanoparticles (alg/chiZN). The chitosan coating layer produced nanoparticulate systems with good stability parameters, high encapsulation efficiency (EE) and a higher bioaccessibilty of quercetin after in-vitro digestion. By increasing the DD of chitosan, the ζ-potential of the colloidal system significantly increased (≥27.1 mV), while low and very low MW chitosans generated systems with smaller particle sizes (≤ 277.8 nm) and polydispersity index [PDI (0.189)]. The best results, in terms of EE (≥84.44) and bioaccessibility (≥76.70), were obtained when the systems were prepared with low MW chitosan and high DD. Thus, the alg/chiZN nanocapsules may be a promising delivery system for improving the quercetin bioaccessibility or other compounds with a similar chemical nature, especially when higher DD and lower MWs are used.


Assuntos
Quitosana , Nanopartículas , Zeína , Quitosana/química , Portadores de Fármacos/química , Zeína/química , Quercetina , Alginatos/química , Peso Molecular , Nanopartículas/química , Tamanho da Partícula
2.
Phytochem Anal ; 32(6): 1051-1058, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33779027

RESUMO

INTRODUCTION: Giant garlic is a functional food that contains different kinds of bioactive molecules with beneficial effects on chronic noncommunicable diseases like diabetes and cardiovascular conditions. Considering biosynthesis pathways, abundance, and biological activity, alliin and S-allyl-cysteine were used as chemical markers of organosulphur compounds present in giant garlic. OBJECTIVE: To establish a chemometric optimisation of pressurised liquid extraction for the determination of alliin and S-allyl-cysteine in giant garlic by liquid chromatography tandem mass spectrometry (LC-MS/MS). METHODOLOGY: Samples were blanched (ca. 90°C for 10 min) to inactivate alliinase and γ-glutamyl transpeptidase enzymes and then freeze-dried. Chemometric optimisation was performed via response surface methodology based on central composite design (CCD). Organosulphur compound yields were determined applying a validated LC-MS/MS method in multiple reaction monitoring (MRM) mode using the following transitions: for alliin m/z 178 → 74 and for S-allyl-cysteine m/z 162 → 41. RESULTS: According to CCD results, under constant conditions of pressure (1500 psi) and time (20 min), the optimal conditions for pressurised liquid extraction of alliin and S-allyl-cysteine were 70.75 and 68.97% v/v of ethanol in extraction solvent and 76.45 and 98.88°C as extraction temperature, respectively. Multiple response optimisation for the simultaneous extraction of both organosulphur compounds was established via desirability function. Under these conditions, 2.70 ± 0.27 mg g-1 dry weight (DW) of alliin and 2.79 ± 0.22 mg g-1 DW of S-allyl-cysteine were extracted. CONCLUSIONS: These results clearly demonstrated that pressurised liquid extraction is an efficient green technique to extract bioactive organosulphur compounds from giant garlic. Extraction yields were significantly (p < 0.05) higher than those obtained with conventional ultra-turrax extraction.


Assuntos
Alho , Cromatografia Líquida , Cisteína/análogos & derivados , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...