Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(5): 1168-1178, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36703560

RESUMO

Carbon aggregates containing between 10 and 30 atoms preferentially arrange themselves as planar rings. To learn more about this exotic allotrope of carbon, electronic spectra are measured for even cyclo[n]carbon radical cations (C14+-C36+) using two-color photodissociation action spectroscopy. To eliminate spectral contributions from other isomers, the target cyclo[n]carbon radical cations are isomer-selected using a drift tube ion mobility spectrometer prior to spectroscopic interrogation. The electronic spectra exhibit sharp transitions spanning the visible and near-infrared spectral regions with the main absorption band shifting progressively to longer wavelength by ≈100 nm for every additional two carbon atoms. This behavior is rationalized with a Hückel theory model describing the energies of the in-plane and out-of-plane π orbitals. Photoexcitation of smaller carbon rings leads preferentially to neutral C3 and C5 loss, whereas rings larger than C24+ tend to also decompose into two smaller rings, which, when possible, have aromatic stability. Generally, the observed charged photofragments correspond to low energy fragment pairs, as predicted by density functional theory calculations (CAM-B3LYP-D3(BJ)/cc-pVDZ). Using action spectroscopy it is confirmed that C14+ and C18+ photofragments from C28+ rings have cyclic structures.

2.
J Phys Chem A ; 126(38): 6678-6685, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36107403

RESUMO

Electronic spectra are measured for protonated carbon clusters (C2n+1H+) containing between 7 and 21 carbon atoms. Linear and cyclic C2n+1H+ isomers are separated and selected using a drift tube ion mobility stage before being mass selected and introduced into a cryogenically cooled ion trap. Spectra are measured using a two-color resonance-enhanced photodissociation strategy, monitoring C2n+1+ photofragments (H atom loss channel) as a function of excitation wavelength. The linear C7H+, C9H+, C11H+, C13H+, C15H+, and C17H+ clusters, which are predicted to have polyynic structures, possess sharp 11Σ+ ← X̃1Σ+ transitions with well-resolved vibronic progressions in C-C stretch vibrational modes. The vibronic features are reproduced by spectral simulations based on vibrational frequencies and geometries calculated with time-dependent density functional theory (ωB97X-D/cc-pVDZ level). The cyclic C15H+, C17H+, C19H+, and C21H+ clusters exhibit weak, broad transitions at a shorter wavelength compared to their linear counterparts. Wavelengths for the origin transitions of both linear and cyclic isomers shift linearly with the number of constituent carbon atoms, indicating that in both cases, the clusters possess a common structural motif.

3.
Phys Chem Chem Phys ; 24(27): 16628-16636, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35766319

RESUMO

The diarylethene chromophore is commonly used in light-triggered molecular switches. The chromophore undergoes reversible 6π-electrocyclisation (ring closing) and cycloreversion (ring opening) reactions upon exposure to UV and visible light, respectively, providing bidirectional photoswitching. Here, we investigate the gas-phase photoisomerisation of meta- (m) and para- (p) substituted dithienylethene carboxylate anions (DTE-) using tandem ion mobility mass spectrometry coupled with laser excitation. The ring-closed forms of p-DTE- and m-DTE- are found to undergo cycloreversion in the gas phase with maximum responses associated with bands in the visible (λmax ≈ 600 nm) and the ultraviolet (λmax ≈ 360 nm). The ring-open p-DTE- isomer undergoes 6π-electrocyclisation in the ultraviolet region at wavelengths shorter than 350 nm, whereas no evidence is found for the corresponding electrocyclisation of ring-open m-DTE-, a situation attributed to the fact that the antiparallel geometry required for electrocyclisation of m-DTE- is energetically disfavoured. This highlights the influence of the carboxylate substitution position on the photochemical properties of DTE molecules. We find no evidence for the formation in the gas phase of the undesirable cyclic byproduct, which causes fatigue of DTE photoswitches in solution.


Assuntos
Luz , Ânions
4.
Rev Sci Instrum ; 93(4): 043201, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489918

RESUMO

Infrared and electronic spectra are indispensable for understanding the structural and energetic properties of charged molecules and clusters in the gas phase. However, the presence of isomers can potentially complicate the interpretation of spectra, even if the target molecules or clusters are mass-selected beforehand. Here, we describe an instrument for spectroscopically characterizing charged molecular clusters that have been selected according to both their isomeric form and their mass-to-charge ratio. Cluster ions generated by laser ablation of a solid sample are selected according to their collision cross sections with helium buffer gas using a drift tube ion mobility spectrometer and their mass-to-charge ratio using a quadrupole mass filter. The mobility- and mass-selected target ions are introduced into a cryogenically cooled, three-dimensional quadrupole ion trap where they are thermalized through inelastic collisions with an inert buffer gas (He or He/N2 mixture). Spectra of the molecular ions are obtained by tagging them with inert atoms or molecules (Ne and N2), which are dislodged following resonant excitation of an electronic transition, or by photodissociating the cluster itself following absorption of one or more photons. An electronic spectrum is generated by monitoring the charged photofragment yield as a function of wavelength. The capacity of the instrument is illustrated with the resonance-enhanced photodissociation action spectra of carbon clusters (Cn +) and polyacetylene cations (HC2nH+) that have been selected according to the mass-to-charge ratio and collision cross section with He buffer gas and of mass-selected Au2 + and Au2Ag+ clusters.

5.
J Am Soc Mass Spectrom ; 33(5): 859-864, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35437995

RESUMO

Determining the primary structure of glycans remains challenging due to their isomeric complexity. While high-resolution ion mobility spectrometry (IMS) has recently allowed distinguishing between many glycan isomers, the arrival-time distributions (ATDs) frequently exhibit multiple peaks, which can arise from positional isomers, reducing-end anomers, or different conformations. Here, we present the combination of ultrahigh-resolution ion mobility, collision-induced dissociation (CID), and cryogenic infrared (IR) spectroscopy as a systematic method to identify reducing-end anomers of glycans. Previous studies have suggested that high-resolution ion mobility of sodiated glycans is able to separate the two reducing-end anomers. In this case, Y-fragments generated from mobility-separated precursor species should also contain a single anomer at their reducing end. We confirm that this is the case by comparing the IR spectra of selected Y-fragments to those of anomerically pure mono- and disaccharides, allowing the assignment of the mobility-separated precursor and its IR spectrum to a single reducing-end anomer. The anomerically pure precursor glycans can henceforth be rapidly identified on the basis of their IR spectrum alone, allowing them to be distinguished from other isomeric forms.


Assuntos
Espectrometria de Mobilidade Iônica , Polissacarídeos , Dissacarídeos , Espectrometria de Mobilidade Iônica/métodos , Isomerismo , Polissacarídeos/análise , Espectrofotometria Infravermelho
6.
J Chem Phys ; 155(21): 214302, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879679

RESUMO

Electronic spectra are measured for mass-selected C2n +(n = 6-14) clusters over the visible and near-infrared spectral range through resonance enhanced photodissociation of clusters tagged with N2 molecules in a cryogenic ion trap. The carbon cluster cations are generated through laser ablation of a graphite disk and can be selected according to their collision cross section with He buffer gas and their mass prior to being trapped and spectroscopically probed. The data suggest that the C2n +(n = 6-14) clusters have monocyclic structures with bicyclic structures becoming more prevalent for C22 + and larger clusters. The C2n + electronic spectra are dominated by an origin transition that shifts linearly to a longer wavelength with the number of carbon atoms and associated progressions involving excitation of ring deformation vibrational modes. Bands for C12 +, C16 +, C20 +, C24 +, and C28 + are relatively broad, possibly due to rapid non-radiative decay from the excited state, whereas bands for C14 +, C18 +, C22 +, and C26 + are narrower, consistent with slower non-radiative deactivation.

7.
J Am Soc Mass Spectrom ; 32(12): 2842-2851, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34787413

RESUMO

The photoisomerization behavior of styryl 9M, a common dye used in material sciences, is investigated using tandem ion mobility spectrometry (IMS) coupled with laser spectroscopy. Styryl 9M has two alkene linkages, potentially allowing for four geometric isomers. IMS measurements demonstrate that at least three geometric isomers are generated using electrospray ionization with the most abundant forms assigned to a combination of EE (major) and ZE (minor) geometric isomers, which are difficult to distinguish using IMS as they have similar collision cross sections. Two additional but minor isomers are generated by collisional excitation of the electrosprayed styryl 9M ions and are assigned to the EZ and ZZ geometric isomers, with the latter predicted to have a π-stacked configuration. The isomer assignments are supported through calculations of equilibrium structures, collision cross sections, and statistical isomerization rates. Photoexcitation of selected isomers using an IMS-photo-IMS strategy shows that each geometric isomer photoisomerizes following absorption of near-infrared and visible light, with the EE isomer possessing a S1 ← S0 electronic transition with a band maximum near 680 nm and shorter wavelength S2 ← S0 electronic transition with a band maximum near 430 nm. The study demonstrates the utility of the IMS-photo-IMS strategy for providing fundamental gas-phase photochemical information on molecular systems with multiple isomerizable bonds.

9.
Nat Chem ; 13(10): 977-981, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34373599

RESUMO

Chemical reaction dynamics are studied to monitor and understand the concerted motion of several atoms while they rearrange from reactants to products. When the number of atoms involved increases, the number of pathways, transition states and product channels also increases and rapidly presents a challenge to experiment and theory. Here we disentangle the dynamics of the competition between bimolecular nucleophilic substitution (SN2) and base-induced elimination (E2) in the polyatomic reaction F- + CH3CH2Cl. We find quantitative agreement for the energy- and angle-differential reactive scattering cross-sections between ion-imaging experiments and quasi-classical trajectory simulations on a 21-dimensional potential energy hypersurface. The anti-E2 pathway is most important, but the SN2 pathway becomes more relevant as the collision energy is increased. In both cases the reaction is dominated by direct dynamics. Our study presents atomic-level dynamics of a major benchmark reaction in physical organic chemistry, thereby pushing the number of atoms for detailed reaction dynamics studies to a size that allows applications in many areas of complex chemical networks and environments.

10.
Phys Chem Chem Phys ; 23(24): 13714-13723, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34128027

RESUMO

We present cryogenic infrared spectra of sodiated ß-cyclodextrin [ß-CD + Na]+, a common cyclic oligosaccharide, and its main dissociation products upon collision-induced dissociation (CID). We characterize the parent ions using high-resolution ion mobility spectrometry and cryogenic infrared action spectroscopy, while the fragments are characterized by their mass and cryogenic infrared spectra. We observe sodium-cationized fragments that differ in mass by 162 u, corresponding to Bn/Zm ions. For the m/z 347 product ion, electronic structure calculations are consistent with formation of the lowest energy 2-ketone B2 ion structure. For the m/z 509 product ion, both the calculated 2-ketone B3 and the Z3 structures show similarities with the experimental spectrum. The theoretical structure most consistent with the spectrum of the m/z 671 ions is a slightly higher energy 2-ketone B4 structure. Overall, the data suggest a consistent formation mechanism for all the observed fragments.

11.
J Phys Chem A ; 124(48): 9942-9950, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33201700

RESUMO

We report cryogenic vibrational spectra of gas-phase cations of two common hydroxycoumarins, scopoletin and esculetin, as well as their glycosidic derivatives, scopolin and esculin. The study allows direct observation of the intramolecular interactions between the hydroxyl groups of these molecules. We use cryogenic messenger-tagging IR action spectroscopy to detect vibrational bands in the 3100-3800 cm-1 spectral range and discuss the corresponding structural characteristics and hydrogen bonding networks that they imply. The experimental data are supported by a thorough computational evaluation, including investigation of the conformational space. Through comparison of the calculated conformers with the experimental results, we identify the main types of OH oscillators and infer how protonation and sodiation affect the structural arrangement of these molecules. The results presented here provide direct evidence of how slight structural differences sensitively affect the hydrogen bonding network in coumarin derivatives.


Assuntos
Cumarínicos/química , Cátions/química , Teoria da Densidade Funcional , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Espectrofotometria Infravermelho
12.
J Chem Phys ; 153(15): 154303, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33092387

RESUMO

Time-resolved spontaneous and laser-induced unimolecular fragmentation of perylene cations (C20H12 +) has been measured on timescales up to 2 s in a cryogenic electrostatic ion beam storage ring. We elaborate a quantitative model, which includes fragmentation in competition with radiative cooling via both vibrational and electronic (recurrent fluorescence) de-excitation. Excellent agreement with experimental results is found when sequential fragmentation of daughter ions co-stored with the parent perylene ions is included in the model. Based on the comparison of the model to experiment, we constrain the oscillator strength of the D1 → D0 emissive electronic transition in perylene (fRF = 0.055 ± 0.011), as well as the absolute absorption cross section of the D5 ← D0 excitation transition (σabs > 670 Mb). The former transition is responsible for the laser-induced and recurrent fluorescence of perylene, and the latter is the most prominent in the absorption spectrum. The vibrational cooling rate is found to be consistent with the simple harmonic cascade approximation. Quantitative experimental benchmarks of unimolecular processes in polycyclic aromatic hydrocarbon ions like perylene are important for refining astrochemical models.

13.
J Phys Chem Lett ; 11(15): 6045-6050, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32539402

RESUMO

Molecular photoswitches based on the norbornadiene-quadricylane (NBD-QC) couple have been proposed as key elements of molecular solar thermal energy storage schemes. To characterize the intrinsic properties of such systems, reversible isomerization of a charge-tagged NBD-QC carboxylate couple is investigated in a tandem ion mobility mass spectrometer, using light to induce intramolecular [2 + 2] cycloaddition of NBD carboxylate to form the QC carboxylate and driving the back reaction with molecular collisions. The NBD carboxylate photoisomerization action spectrum recorded by monitoring the QC carboxylate photoisomer extends from 290 to 360 nm with a maximum at 315 nm, and in the longer wavelength region resembles the NBD carboxylate absorption spectrum recorded in solution. Key structural and photochemical properties of the NBD-QC carboxylate system, including the gas-phase absorption spectrum and the energy storage capacity, are determined through computational studies using density functional theory.

14.
J Am Chem Soc ; 142(13): 5948-5951, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32176849

RESUMO

Despite the essential role that glycans play in many biological processes, their isomeric complexity makes their structural determination particularly challenging. Tandem mass spectrometry has played a central role in glycan analysis, and recent work has shown that fragments generated by collision-induced dissociation (CID) of disaccharides can retain the anomeric configuration of the glycosidic bond. If this result proves to be general, it would provide a powerful new tool for glycan sequencing. In this work, we use messenger-tagging infrared (IR) spectroscopy to investigate the generality of anomer retention in CID by exploring different fragmentation channels in glycans of increasing complexity. Our results demonstrate that anomericity seems to be retained irrespective of fragment size and branching.


Assuntos
Polissacarídeos/química , Configuração de Carboidratos , Dissacarídeos/química , Espectrofotometria Infravermelho , Espectrometria de Massas em Tandem
15.
Anal Chem ; 92(2): 1658-1662, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31898462

RESUMO

Given the biological relevance and intrinsic structural complexity of glycans, increasing efforts are being directed toward developing a general glycan database that includes information from different analytical methods. As recently demonstrated, cryogenic infrared (IR) spectroscopy is a promising technique for glycan analysis, as it provides unique vibrational fingerprints of specific glycan isomer ions. One of the main goals of a glycan database is the identification and detailed characterization of unknown species. In this work, we combine enzymatic digestion with cryogenic IR-spectroscopy and demonstrate how it can be used for glycan identification. We measured the IR-spectra of a series of cationic glycan standards of increasing complexity and compared them with spectra of the same species after enzymatic cleavage of larger glycans. We show that the cryogenic IR spectra of the cleaved glycans are highly structured and virtually identical to those of standards after both single and multiple cleavages. Our results suggest that the combination of these methods represents a potentially powerful and specific approach for the characterization of unknown glycans.


Assuntos
Glicosídeo Hidrolases/metabolismo , Polissacarídeos/análise , Configuração de Carboidratos , Bases de Dados de Compostos Químicos , Glicosídeo Hidrolases/química , Polissacarídeos/metabolismo , Espectrofotometria Infravermelho
16.
Chemphyschem ; 21(7): 680-685, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-31736199

RESUMO

Indigoid chromophores have emerged as versatile molecular photoswitches, offering efficient reversible photoisomerization upon exposure to visible light. Here we report synthesis of a new class of permanently charged hemiindigos (HIs) and characterization of photochemical properties in gas phase and solution. Gas-phase studies, which involve exposing mobility-selected ions in a tandem ion mobility mass spectrometer to tunable wavelength laser radiation, demonstrate that the isolated HI ions are photochromic and can be reversibly photoswitched between Z and E isomers. The Z and E isomers have distinct photoisomerization response spectra with maxima separated by 40-80 nm, consistent with theoretical predictions for their absorption spectra. Solvation of the HI molecules in acetonitrile displaces the absorption bands to lower energy. Together, gas-phase action spectroscopy and solution NMR and UV/Vis absorption spectroscopy represent a powerful approach for studying the intrinsic photochemical properties of HI molecular switches.

17.
J Am Chem Soc ; 141(51): 20300-20308, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31782654

RESUMO

Base-induced elimination (E2) and bimolecular nucleophilic substitution (SN2) are two of the most versatile reactions that are important in preparative organic chemistry. These stereospecific reactions are often found in direct competition with each other. Elimination can proceed via two distinct transition states, referred to as anti and syn, of which anti is commonly energetically favored. To investigate the intrinsic dynamics of base-induced elimination, reactions under single-collision conditions are required. Here, we present reactive scattering results on the prototype reaction of the fluoride anion with tert-butyl halides. The observed mechanistic fingerprints are associated with the E2 reaction, because steric hindrance at the α-carbon suppresses the SN2 reaction [Carrascosa, E.; Meyer, J.; Zhang, J.; Stei, M.; Michaelsen, T.; Hase, W. L.; Yang, L.; Wester, R. Nat. Commun. 2017, 8, 25]. The reaction coordinate shows energetically submerged transition states, with anti favored over syn, and we found a very shallow prereaction well for anti. We predominantly found indirect dynamics for a range of collision energies, which can be separated into three remarkably different mechanisms. At low collision energies, the first is a large impact parameter indirect mechanism which leads to a forward-backward symmetric scattering signature. The second mechanism is attributed to low-impact parameter reactions with a near-statistical partitioning of the total available energy. The majority of events are associated with widespread isotropic scattering. Unexpectedly, the product ion kinetic energy distributions are independent of collision energy. We associate this with dynamic trapping in a prereaction well supported by a large centrifugal potential. These measured fingerprints support that atomistic reaction dynamics cannot be predicted based on stationary arguments alone.

18.
J Chem Phys ; 151(11): 114304, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31542045

RESUMO

Ultraslow radiative cooling lifetimes and adiabatic detachment energies for three astrochemically relevant anions, Cn - (n = 3-5), are measured using the Double ElectroStatic Ion Ring ExpEriment (DESIREE) infrastructure at Stockholm University. DESIREE maintains a background pressure of ≈10-14 mbar and temperature of ≈13 K, allowing storage of mass-selected ions for hours and providing conditions coined a "molecular cloud in a box." Here, we construct two-dimensional (2D) photodetachment spectra for the target anions by recording photodetachment signal as a function of irradiation wavelength and ion storage time (seconds to minute time scale). Ion cooling lifetimes, which are associated with infrared radiative emission, are extracted from the 2D photodetachment spectrum for each ion by tracking the disappearance of vibrational hot-band signal with ion storage time, giving 1e cooling lifetimes of 3.1 ± 0.1 s (C3 -), 6.8 ± 0.5 s (C4 -), and 24 ± 5 s (C5 -). Fits of the photodetachment spectra for cold ions, i.e., those stored for at least 30 s, provide adiabatic detachment energies in good agreement with values from laser photoelectron spectroscopy on jet-cooled anions, confirming that radiative cooling has occurred in DESIREE. Ion cooling lifetimes are simulated using a simple harmonic cascade model, finding good agreement with experiment and providing a mode-by-mode understanding of the radiative cooling properties. The 2D photodetachment strategy and radiative cooling modeling developed in this study could be applied to investigate the ultraslow cooling dynamics of a wide range of molecular anions.

19.
J Phys Chem A ; 123(20): 4419-4430, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-30964682

RESUMO

Deprotonated para-coumaric acid is commonly considered as a model for the chromophore in photoactive yellow protein, which undergoes E → Z isomerization following absorption of blue light. Here, tandem ion mobility mass spectrometry is coupled with laser excitation to study the photochemistry of deprotonated para-coumaric acid, to show that the E isomers of the phenoxide and carboxylate forms have distinct photochemical responses with maxima in their action spectra at 430 and 360 nm, respectively. The E isomer of the phenoxide anion undergoes efficient autodetachment upon excitation of its lowest ππ* transition. For the E isomer of the carboxylate deprotomer, a one-way photoinitiated proton transfer generates the phenoxide deprotomer through a mechanism postulated to involve an excited-state enol-keto tautomerism followed by a series of ground-state rearrangements including a second proton transfer. This mechanism is supported by experiments in which the relevant intermediate keto isomer is prepared and spectroscopically probed and through master equation modeling of possible ground-state isomerization processes. The Z isomer of the carboxylate deprotomer shows a weak Z → E photoisomerization response that occurs in competition with photodestruction (presumably electron detachment), demonstrating that the E and Z isomers undergo different processes in their excited states. The study highlights the utility of isomer-selective spectroscopy for characterizing the photochemistry of isolated anions possessing multiple deprotonation sites.

20.
Faraday Discuss ; 217(0): 34-46, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31017134

RESUMO

Substituted naphthalene anions (deprotonated 2-naphthol and 6-hydroxy-2-naphthoic acid) are spectroscopically probed in a tandem drift tube ion mobility spectrometer (IMS). Target anions are selected according to their drift speed through nitrogen buffer gas in the first IMS stage before being exposed to a pulse of tunable light that induces either photodissociation or electron photodetachment, which is conveniently monitored by scavenging the detached electrons with trace SF6 in the buffer gas. The photodetachment action spectrum of the 2-naphtholate anion exhibits a band system spanning 380-460 nm with a prominent series of peaks spaced by 440 cm-1, commencing at 458.5 nm, and a set of weaker peaks near the electron detachment threshold corresponding to transitions to dipole-bound states. The two deprotomers of 6-hydroxy-2-naphthoic acid are separated and spectroscopically probed independently. The molecular anion formed from deprotonation of the hydroxy group gives rise to a photodetachment action spectrum similar to that of the 2-naphtholate anion with an onset at 470 nm and a maximum at 420 nm. Near the threshold, the photoreaction with SF6 is observed with displacement of an OH group by an F atom. In contrast, the anion formed from deprotonation of the carboxylic acid group gives rise to a photodissociation action spectrum, recorded on the CO2 loss channel, lying at much shorter wavelengths with an onset at 360 nm and maximum photoresponse at 325 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...