Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 17(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38501211

RESUMO

Mitogen-activated protein 3 kinase 1 (MAP3K1) has a plethora of cell type-specific functions not yet fully understood. Herein, we describe a role for MAP3K1 in female reproductive tract (FRT) development. MAP3K1 kinase domain-deficient female mice exhibited an imperforate vagina, labor failure and infertility. These defects corresponded with shunted Müllerian ducts (MDs), the embryonic precursors of FRT, that manifested as a contorted caudal vagina and abrogated vaginal-urogenital sinus fusion in neonates. The MAP3K1 kinase domain is required for optimal activation of the Jun-N-terminal kinase (JNK) and cell polarity in the MD epithelium, and for upregulation of WNT signaling in the mesenchyme surrounding the caudal MD. The MAP3K1-deficient epithelial cells and MD epithelium had reduced expression of WNT7B ligands. Correspondingly, conditioned media derived from MAP3K1-competent, but not -deficient, epithelial cells activated a TCF/Lef-luciferase reporter in fibroblasts. These observations indicate that MAP3K1 regulates MD caudal elongation and FRT development, in part through the induction of paracrine factors in the epithelium that trans-activate WNT signaling in the mesenchyme.


Assuntos
Células Epiteliais , MAP Quinase Quinase Quinase 1 , Vagina , Animais , Feminino , Camundongos , Células Epiteliais/metabolismo , Epitélio/metabolismo , Vagina/metabolismo , Via de Sinalização Wnt , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo
2.
bioRxiv ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37131749

RESUMO

Mitogen-Activated Protein 3 Kinase 1 (MAP3K1) is a dynamic signaling molecule with a plethora of cell-type specific functions, most of which are yet to be understood. Here we describe a role for MAP3K1 in the development of female reproductive tract (FRT). MAP3K1 kinase domain-deficient ( Map3k1 ΔKD ) females exhibit imperforate vagina, labor failure, and infertility. These defects correspond to a shunted Müllerian duct (MD), the principle precursor of the FRT, in embryos, while they manifest as a contorted caudal vagina with abrogated vaginal-urogenital sinus fusion in neonates. In epithelial cells, MAP3K1 acts through JNK and ERK to activate WNT, yet in vivo MAP3K1 is crucial for WNT activity in mesenchyme associated with the caudal MD. Expression of Wnt7b is high in wild type, but low in Map3k1 knockout MD epithelium and MAP3K1-deficient keratinocytes. Correspondingly, conditioned media derived from MAP3K1-competent epithelial cells activate TCF/Lef-luciferase reporter in fibroblasts, suggesting that MAP3K1-induced factors released from epithelial cells trans-activate WNT signaling in fibroblasts. Our results reveal a temporal-spatial and paracrine MAP3K1-WNT crosstalk contributing to MD caudal elongation and FRT development. Highlights: MAP3K1 deficient female mice exhibit imperforate vagina and infertilityLoss of MAP3K1 kinase activity impedes Müllerian duct (MD) caudal elongation and fusion with urogenital sinus (UGS) in embryogenesisThe MAP3K1-MAPK pathway up-regulates WNT signaling in epithelial cellsMAP3K1 deficiency down-regulates Wnt7b expression in the MD epithelium and prevents WNT activity in mesenchyme of the caudal MD.

3.
J Exp Med ; 220(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36787127

RESUMO

Non-alcoholic steatohepatitis (NASH) is a global health concern without treatment. The challenge in finding effective therapies is due to the lack of good mouse models and the complexity of the disease, characterized by gene-environment interactions. We tested the susceptibility of seven mouse strains to develop NASH. The severity of the clinical phenotypes observed varied widely across strains. PWK/PhJ mice were the most prone to develop hepatic inflammation and the only strain to progress to NASH with extensive fibrosis, while CAST/EiJ mice were completely resistant. Levels of mitochondrial transcripts and proteins as well as mitochondrial function were robustly reduced specifically in the liver of PWK/PhJ mice, suggesting a central role of mitochondrial dysfunction in NASH progression. Importantly, the NASH gene expression profile of PWK/PhJ mice had the highest overlap with the human NASH signature. Our study exposes the limitations of using a single mouse genetic background in metabolic studies and describes a novel NASH mouse model with features of the human NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos Endogâmicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Animais de Doenças
4.
JCI Insight ; 8(3)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752209

RESUMO

Acute kidney failure and chronic kidney disease are global health issues steadily rising in incidence and prevalence. Animal models on a single genetic background have so far failed to recapitulate the clinical presentation of human nephropathies. Here, we used a simple model of folic acid-induced kidney injury in 7 highly diverse mouse strains. We measured plasma and urine parameters, as well as renal histopathology and mRNA expression data, at 1, 2, and 6 weeks after injury, covering the early recovery and long-term remission. We observed an extensive strain-specific response ranging from complete resistance of the CAST/EiJ to high sensitivity of the C57BL/6J, DBA/2J, and PWK/PhJ strains. In susceptible strains, the severe early kidney injury was accompanied by the induction of mitochondrial stress response (MSR) genes and the attenuation of NAD+ synthesis pathways. This is associated with delayed healing and a prolonged inflammatory and adaptive immune response 6 weeks after insult, heralding a transition to chronic kidney disease. Through a thorough comparison of the transcriptomic response in mouse and human disease, we show that critical metabolic gene alterations were shared across species, and we highlight the PWK/PhJ strain as an emergent model of transition from acute kidney injury to chronic disease.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Camundongos Endogâmicos C57BL , NAD , Camundongos Endogâmicos DBA
5.
J Histochem Cytochem ; 70(4): 273-287, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35193424

RESUMO

B-cell maturation antigen (BCMA) is a target for the treatment of multiple myeloma with cytolytic therapies, such as chimeric antigen receptor T-cells or T-cell redirecting antibodies. To better understand the potential for "on-target/off-tumor" toxicity caused by BCMA-targeting cytolytic therapies in the brain, we investigated normal brain BCMA expression. An immunohistochemistry (IHC) assay using the E6D7B commercial monoclonal antibody was applied to 107 formalin-fixed, paraffin-embedded brain samples (cerebrum, basal ganglia, cerebellum, brainstem; 63 unique donors). Although immunoreactivity was observed in a small number of neurons in brain regions including the striatum, thalamus, midbrain, and medulla, this immunoreactivity was considered nonspecific and not reflective of BCMA expression because it was distinct from the membranous and Golgi-like pattern seen in positive control samples, was not replicated when a different IHC antibody (D6 clone) was used, and was not corroborated by in situ hybridization data. Analysis of RNA-sequencing data from 478 donors in the GTEx and Allen BrainSpan databases demonstrated low levels of BCMA RNA expression in the striatum of young donors with levels becoming negligible beyond 30 years of age. We concluded that BCMA protein is not present in normal adult human brain, and therefore on-target toxicity in the brain is unlikely.


Assuntos
Antígeno de Maturação de Linfócitos B , Mieloma Múltiplo , Adulto , Antígeno de Maturação de Linfócitos B/genética , Antígeno de Maturação de Linfócitos B/metabolismo , Encéfalo/metabolismo , Humanos , Imuno-Histoquímica , Imunoterapia Adotiva , Mieloma Múltiplo/terapia
6.
Toxicol Sci ; 180(1): 51-61, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33483736

RESUMO

Two young cynomolgus macaques (Macaca fascicularis) given a small molecule kinase inhibitor ((S)-4-((2-(5-chloro-2-fluorophenyl)-5-isopropylpyrimidin-4-yl)amino)-N-(2-hydroxypropyl)nicotinamide [SCIO-120]) via nasogastric intubation gavage, once-daily for 21 days at 400 mg/kg/day, developed an unusual epithelial proliferative process in the renal parenchyma. Morphological and immunohistochemical characterization of the lesions confirmed an invasive malignant epithelial neoplasm (carcinoma). A similar renal neoplasm was seen in a third macaque after a 14-day exposure to a second kinase inhibitor in the same chemical series ((S) 4-((2-(5-chloro-2-fluorophenyl)-5-methoxypyrimidin-4-yl)amino)-N-cyclopropylnicotinamide [SCIO-974]). Despite remarkably short latency periods, exposure to these kinase inhibitors was likely causally associated with the induction of the renal tumors, as renal carcinomas are exceedingly rare spontaneously in macaques. Both SCIO-120 and SCIO-974 were designed as potent TGFßR1 inhibitors (IC50s 37 and 39 nM, respectively). SCIO-120 and SCIO-974 inhibited additional kinases, most notably closely related ALK4 (IC50 = 34 and 20 nM, respectively), c-Jun n-Terminal kinase 3 (JNK3, IC50 = 10 and 20 nM, respectively), and Fms-related tyrosine kinase 1 (29 and 76 nM, respectively). TGFßR1 has been specifically implicated in epithelial proliferative disorders, including neoplasia. Neither SCIO-120 nor SCIO-974 was genotoxic based on bacterial reverse mutation and/or clastogenicity screening assays. The rapid appearance of renal carcinomas in primates following short-term treatment with nongenotoxic kinase inhibitors is remarkable and suggests that the compounds had noteworthy tumor-enhancing effects, hypothetically linked to their TGFßR1 inhibition activity. These observations have implications for mechanisms of carcinogenesis and TGFßR1 biology.


Assuntos
Neoplasias Renais , Neoplasias Epiteliais e Glandulares , Animais , Humanos , Macaca fascicularis , Proteína Quinase 10 Ativada por Mitógeno , Inibidores de Proteínas Quinases/toxicidade , Receptor 1 de Fatores de Crescimento do Endotélio Vascular
7.
Toxicol Pathol ; 47(5): 612-633, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31409264

RESUMO

To further our understanding of the nonhuman primate kidney anatomy, histology, and incidences of spontaneous pathology, we retrospectively examined kidneys from a total of 505 control Cynomolgus monkeys (Macaca fascicularis; 264 male and 241 females) aged 2 to 6 years, from toxicity studies. Kidney weights, urinalysis, and kidney-related clinical biochemistry parameters were also evaluated. Although the functional anatomy of the monkey kidney is relatively similar to that of other laboratory animals and humans, a few differences and species-specific peculiarities exist. Unlike humans, the macaque kidney is unipapillate, with a relatively underdeveloped papilla, scarce long loops of Henle, and a near-equivalent cortical to medullary ratio. The most common spontaneous microscopic findings were interstitial infiltrates or interstitial nephritis and other tubular lesions, but several forms of glomerulopathy that may be interpreted as drug-induced were occasionally observed. Common incidental findings of little pathological significance included: papillary mineralization, epithelial pigment, multinucleate cells, cuboidal metaplasia of the Bowman's capsule, and urothelial inclusions. Kidney weights, and some clinical chemistry parameters, showed age- and sex-related variations. Taken together, these data will aid the toxicologic pathologist to better evaluate the nonhuman primate kidney and assess the species' suitability as a model for identifying and characterizing drug-induced injury.


Assuntos
Nefropatias/patologia , Rim/anatomia & histologia , Rim/patologia , Animais , Biomarcadores/metabolismo , Feminino , Imuno-Histoquímica , Rim/metabolismo , Nefropatias/metabolismo , Testes de Função Renal , Macaca fascicularis , Masculino , Tamanho do Órgão/fisiologia , Especificidade da Espécie , Urinálise
8.
Toxicol Pathol ; 46(8): 865-897, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30282530

RESUMO

The 2018 annual National Toxicology Program Satellite Symposium, entitled "Pathology Potpourri," was held in Indianapolis, Indiana, at the Society of Toxicologic Pathology's 37th annual meeting. The goal of this symposium was to present and discuss challenging diagnostic pathology and/or nomenclature issues. This article presents summaries of the speakers' talks along with select images that were used by the audience for voting and discussion. Various lesions and other topics covered during the symposium included seminiferous tubule dysgenesis in rats, ameloblast and odontoblast degeneration/necrosis in a Sprague Dawley rat, intestinal leiomyositis in a beagle dog, gallbladder mucinous hyperplasia, focus of hepatocellular alteration and bile duct alteration in otters, renal tubule cytoplasmic vacuolation with basophilic granules in mice treated swith antisense oligonucleotide therapy, a uterine choriocarcinoma in a rhesus macaque, and rete ovarii proliferative ovarian lesions in various aged rat strains. One particularly provocative lesion was a malignant neoplastic proliferation in the renal pelvic region of a cynomolgus macaque from a 21-day study. Additional challenging lesions included thyroid proliferative lesions in zebra fish and gross findings in fish larvae during routine chemical screening. The Rabbit and Minipig International Harmonization of Nomenclature and Diagnostic Criteria Organ Working Groups also presented a series of challenging lesions.


Assuntos
Toxicologia , Animais
9.
Toxicol Pathol ; 46(8): 1037-1048, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30352538

RESUMO

The toxicologic pathologist plays a vital role in the scientific community, using their unique blend of diagnostic and investigative skills to advance biomedical research, public health, drug discovery, or regulatory practices. But what exactly do toxicologic pathologists contribute? Where do these specialized professionals work? How can toxicologic pathologists maximize their efficiency and potential? To enlighten students and trainees, as well as early- or mid-career toxicologic pathologists, or even those approaching retirement, the Career Development and Outreach Committee of the Society of Toxicologic Pathology (STP) sponsored a career development workshop entitled "Practical Strategies for Navigating Toxicologic Pathology in One's Early Career…and Beyond!" in conjunction with the STP 37th annual symposium. The workshop featured toxicologic pathologists from contract research organizations and the pharmaceutical industry, who provided their perspectives on career preparation, evolving veterinary pathologist roles within various sectors of toxicologic pathology, the fundamentals of safety assessment, logistics of projects involving good laboratory practices, tools for effective interpretation and communication of anatomic and clinical pathology results, and a recap of scientific resources available to support the toxicologic pathologist in his or her journey. This article provides brief summaries of the talks presented during this career development workshop.


Assuntos
Escolha da Profissão , Patologia , Toxicologia , Humanos
10.
Toxicol Pathol ; 45(8): 1055-1066, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233079

RESUMO

To test the diagnostic approach described in part 1 of this article, 2 exercises were completed by pathologists from multiple companies/agencies. Pathologist's examination of whole slide image (WSI) heart sections from rats using personal diagnostic approaches (exercise #1) corroborated conclusions from study #1. Using the diagnostic approach described in part 1, these pathologists examined the same WSI heart sections (exercise #2) to determine whether that approach increased consistency of diagnosis of rodent progressive cardiomyopathy (PCM) lesions. In exercise #2, there was improved consistency of categorization of small borderline morphologies and mild lesions, but a decrement in consistency of categorizing minimal lesions. Exercises 1 and 2 suggest the described diagnostic approach is representative of that in use by the majority of toxicologic pathologists across companies/agencies and that application by all may improve diagnostic consistency of PCM/like lesions. Additionally, a criterion of approximately 5% heart section involvement is suggested for separating mild from moderate or greater severity. While evidence is not absolute, until further investigation shows otherwise, microscopic changes resembling PCM, but located in the epicardial and subepicardial region of the right ventricle, may be considered as part of the spectrum of PCM.


Assuntos
Cardiomiopatias/patologia , Diagnóstico por Imagem/métodos , Ventrículos do Coração/patologia , Ratos Sprague-Dawley , Doenças dos Roedores/patologia , Testes de Toxicidade/métodos , Animais , Cardiomiopatias/veterinária , Cardiotoxicidade/patologia , Cardiotoxicidade/veterinária , Simulação por Computador , Diagnóstico por Imagem/normas , Diagnóstico por Imagem/veterinária , Progressão da Doença , Masculino , Testes de Toxicidade/veterinária
11.
Toxicol Pathol ; 45(8): 1043-1054, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29173114

RESUMO

Spontaneous rodent progressive cardiomyopathy (PCM) in the Sprague Dawley rat may confound identification and/or interpretation of potential test article (TA)-related cardiotoxicity. Pathologists apply diagnostic term(s) and thresholds for diagnosing and assigning severity grades for PCM and/or PCM-like (PCM/like) lesions consistently within a study, which is necessary to identify and interpret TA-related findings. Due to differences in training and/or experiences, diagnostic terms and thresholds may vary between pathologists. Harmonized terminology and thresholds across studies will generate better historical control data, will likely enhance interpretation of study data, and may further enhance our understanding of the spontaneous change. An assessment of the diagnostic approaches of a group of 37 pathologists identified an approach that is relatively easily applied; and if adopted, it could enhance diagnostic consistency across studies. This approach uses the single "slash" term "necrosis/inflammatory cell infiltrate (NICI)" as the diagnosis for the spectrum of lesions seen in younger rats, uses no threshold for diagnosis (e.g., diagnose all lesions clearly identifiable as PCM/like), and uses aggregate lesion size of approximately ≥45% of the field of view (FOV) using a 10×/22 eyepiece and the 40× objective or approximately ≥100% of the FOV using the 60× objective as the criterion separating minimal from mild severities.


Assuntos
Cardiomiopatias/patologia , Diagnóstico por Imagem/métodos , Ratos Sprague-Dawley , Doenças dos Roedores/patologia , Testes de Toxicidade/veterinária , Animais , Cardiomiopatias/veterinária , Cardiotoxicidade/patologia , Cardiotoxicidade/veterinária , Simulação por Computador , Diagnóstico por Imagem/normas , Diagnóstico por Imagem/veterinária , Progressão da Doença , Masculino , Necrose , Índice de Gravidade de Doença
12.
Mol Cancer Ther ; 16(11): 2432-2441, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28864682

RESUMO

Inhibition of mTOR signaling using the rapalog everolimus is an FDA-approved targeted therapy for patients with lung and gastroenteropancreatic neuroendocrine tumors (NET). However, patients eventually progress on treatment, highlighting the need for additional therapies. We focused on pancreatic NETs (pNET) and reasoned that treatment of these tumors upon progression on rapalog therapy, with an mTOR kinase inhibitor (mTORKi), such as CC-223, could overcome a number of resistance mechanisms in tumors and delay cardiac carcinoid disease. We performed preclinical studies using human pNET cells in vitro and injected them subcutaneously or orthotopically to determine tumor progression and cardiac function in mice treated with either rapamycin alone or switched to CC-223 upon progression. Detailed signaling and RNA sequencing analyses were performed on tumors that were sensitive or progressed on mTOR treatment. Approximately 57% of mice bearing pNET tumors that progressed on rapalog therapy showed a significant decrease in tumor volume upon a switch to CC-223. Moreover, mice treated with an mTORKi exhibited decreased cardiac dilation and thickening of heart valves than those treated with placebo or rapamycin alone. In conclusion, in the majority of pNETs that progress on rapalogs, it is possible to reduce disease progression using an mTORKi, such as CC-223. Moreover, CC-223 had an additional transient cardiac benefit on valvular fibrosis compared with placebo- or rapalog-treated mice. These results provide the preclinical rationale to further develop mTORKi clinically upon progression on rapalog therapy and to further test their long-term cardioprotective benefit in those NET patients prone to carcinoid syndrome. Mol Cancer Ther; 16(11); 2432-41. ©2017 AACR.


Assuntos
Doença Cardíaca Carcinoide/tratamento farmacológico , Tumores Neuroendócrinos/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Serina-Treonina Quinases TOR/genética , Animais , Doença Cardíaca Carcinoide/complicações , Doença Cardíaca Carcinoide/genética , Doença Cardíaca Carcinoide/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Everolimo/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Tumores Neuroendócrinos/complicações , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Pirazinas/administração & dosagem , Sirolimo/administração & dosagem , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Toxicol Appl Pharmacol ; 327: 59-70, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28433707

RESUMO

The risk of human exposure to fiber nanoparticles has risen in recent years due to increases in the manufacture and utilization of carbon nanotubes (CNTs). CNTs are present as airborne particulates in occupational settings and their hazard potential has been demonstrated in experimental lung exposure studies using inbred mouse strains. However, it is not known whether different inbred strains differ in lung responses to CNTs by virtue of their genetics. In this work, common inbred strains (BALB/c, C57Bl/6, DBA/2, and C3H/He) were exposed to CNTs via oropharyngeal aspiration and lung histology and bronchoalveolar lavage (BAL) samples were evaluated over 28days with the objective of evaluating sensitivity/resistance among strains. C57Bl/6 mice developed significantly more extensive type II pneumocyte (T2P) hyperplasia and alveolar infiltrate compared to DBA/2 mice, which were resistant. Surprisingly, DBA/2 but not C57Bl/6 mice were extremely sensitive to increases in leukocytes recovered in BAL fluid. Underlying global gene expression patterns in the two strains were compared using mRNA sequencing to investigate regulatory networks associated with the different effects. The impact of exposure on gene networks regulating various aspects of immune response and cell survival was limited in DBA/2 mice compared to C57Bl/6. Investigation of B6D2F1 (C57Bl/6×DBA/2 hybrid) mice demonstrated inheritance of sensitivity to CNT exposures in regard to toxicologic lung pathology and BAL leukocyte accumulations. These findings demonstrate a genetic basis of susceptibility to CNT particle exposures and both inform the use of inbred mouse models and suggest the likelihood of differences in genetic susceptibility among humans.


Assuntos
Redes Reguladoras de Genes/efeitos dos fármacos , Predisposição Genética para Doença , Pneumopatias/induzido quimicamente , Pneumopatias/genética , Nanotubos de Carbono/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Contagem de Leucócitos , Pulmão/patologia , Pneumopatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos , Alvéolos Pulmonares/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Especificidade da Espécie
14.
Toxicology ; 355-356: 9-20, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27163630

RESUMO

Epidemiological studies in humans and experimental work in rodents suggest that exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental toxicant, is associated with incidence of heart disease. Although TCDD toxicity depends by and large on the aryl hydrocarbon receptor (AHR), the role of the cardiac AHR in TCDD induced cardiovascular disease is not well defined. To determine whether the Ahr gene mediates disruption of heart function by TCDD, we generated a cardiomyocyte-specific Ahr knockout mouse by crossing Ahr(fx/fx) mice with ßMhc:cre/+ mice, in which expression of Cre recombinase is driven by the promoter of the ßMhc (myosin heavy chain-beta) gene. Starting at three months of age, mice with cardiomyocyte-specific Ahr ablation were exposed to 1µg/kg/week of TCDD or control vehicle by oral gavage for an additional three months. Relative to unexposed controls, TCDD-exposure induced cardiomyocyte Ahr-independent changes in males but not females, including a significant increase in body weight, blood pressure, and cardiac hypertrophy and a decrease in cardiac ejection fraction. TCDD exposure also induced cardiomyocyte Ahr-dependent changes in fibrosis and calcium signaling gene expression in both males and females. TCDD exposure appears to cause sexually dimorphic effects on heart function and induce fibrosis and changes in calcium signaling in both males and females through activation of the cardiomyocyte-specific Ahr.


Assuntos
Poluentes Ambientais/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Animais , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Cálcio/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , Fatores Sexuais , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
15.
Toxicol Pathol ; 44(2): 211-25, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26839332

RESUMO

Carbon nanotubes (CNTs) are emerging as important occupational and environmental toxicants owing to their increasing prevalence and potential to be inhaled as airborne particles. CNTs are a concern because of their similarities to asbestos, which include fibrous morphology, high aspect ratio, and biopersistence. Limitations in research models have made it difficult to experimentally ascertain the risk of CNT exposures to humans and whether these may lead to lung diseases classically associated with asbestos, such as mesothelioma and fibrosis. In this study, we sought to comprehensively compare profiles of lung pathology in mice following repeated exposures to multiwall CNTs or crocidolite asbestos (CA). We show that both exposures resulted in granulomatous inflammation and increased interstitial collagen; CA exposures caused predominantly bronchoalveolar hyperplasia, whereas CNT exposures caused alveolar hyperplasia of type II pneumocytes (T2Ps). T2Ps isolated from CNT-exposed lungs were found to have upregulated proinflammatory genes, including interleukin 1ß (IL-1ß), in contrast to those from CA exposed. Immunostaining in tissue showed that while both toxicants increased IL-1ß protein expression in lung cells, T2P-specific IL-1ß increases were greater following CNT exposure. These results suggest related but distinct mechanisms of action by CNTs versus asbestos which may lead to different outcomes in the 2 exposure types.


Assuntos
Asbesto Crocidolita/toxicidade , Exposição por Inalação/análise , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Pneumonia , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/patologia , Animais , Apoptose , Histocitoquímica , Pulmão/citologia , Pulmão/diagnóstico por imagem , Pulmão/patologia , Masculino , Camundongos , Pneumonia/diagnóstico por imagem , Pneumonia/patologia
16.
Toxicol Sci ; 149(2): 346-57, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26572662

RESUMO

The AHR is a ligand-activated transcription factor that mediates gene-environment interactions. Genome-wide expression profiling during differentiation of mouse ES cells into cardiomyocytes showed that AHR activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin; Dioxin (TCDD), its prototypical ligand, disrupted the expression of multiple homeobox transcription factors and inhibited cardiomyocyte contractility. Here we treated ES cells with TCDD at daily differentiation intervals to investigate whether TCDD-induced loss of contractility had a developmental window of sensitivity. Surprisingly, contractility was an AHR-dependent TCDD target solely between differentiation days 0 and 3 during the period of panmesoderm development, when TCDD also disrupted expression of genes in the TGFß/BMP2/4 and wingless-type MMTV integration site (WNT)signaling pathways, suppressed the secretion of bone morphogenetic protein (BMP4), WNT3a, and WNT5a and elevated the secretion of Activin A, as determined by ELISA of the secreted proteins in the culture medium. Supplementing the culture medium with BMP4, WNT3a, or WNT5a during the first 3 days of differentiation successfully countered TCDD-induced impairment of contractility, while anti-WNT3a, or anti-WNT5a antibodies or continuous Noggin (a BMP4 antagonist) or Activin A treatment inhibited the contractile phenotype. In Ahr(+/+), but not in Ahr(-) (/) (-) ES cells, TCDD treatment significantly increased mitochondrial copy number, suggestive of mitochondrial stress and remodeling. Sustained AHR activation during ES cell differentiation appears to disrupt the expression of signals critical to the ontogeny of cardiac mesoderm and cause the loss of contractility in the resulting cardiomyocyte lineage.


Assuntos
Ativinas/fisiologia , Proteínas Morfogenéticas Ósseas/fisiologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/citologia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Receptores de Hidrocarboneto Arílico/fisiologia , Transdução de Sinais/fisiologia
17.
PLoS One ; 10(11): e0142440, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26555816

RESUMO

The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.


Assuntos
Cardiopatias Congênitas/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Animais , Feminino , Cardiopatias Congênitas/fisiopatologia , Homeostase , Exposição Materna , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/metabolismo , Gravidez , Receptores de Hidrocarboneto Arílico/genética
18.
Neurotoxicol Teratol ; 51: 68-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26340819

RESUMO

Use of silver nanoparticles (AgNPs) for their antimicrobial properties is widespread. Much of the previous work on the toxicity of AgNPs has been conducted in vitro or following oral or intravenous administration in vivo. Intranasal (IN) instillation of AgNPs mimics inhalation exposure and allows further exploration of the toxicity of these particles via respiratory tract exposure. The present study involved 1) single-dose exposures to assess tissue distribution and toxicity and 2) repeated exposures to assess behavioral effects of IN AgNP exposure (nominally uncoated 25 nm AgNP). AgNP deposition was localized in the liver, gut-associated lymphoid tissue, and brain. Decrease cellularity in spleen follicles was observed in treated mice, along with changes in cell number and populations in the spleen. The splenic GSH:GSSG ratio was also reduced following AgNP exposure. Expression of the oxidative stress-responsive gene Hmox1 was elevated in the hippocampus, but not cortex of treated mice, as was the level of HMOX1 protein. Mice receiving 7 days of IN exposure to 50 mg/kg AgNPs exhibited similar learning- and memory-related behaviors to control mice, except that treated mice spent significantly less time in the target quadrant of the Morris Water Maze during the acquisition phase probe trial. These findings indicate systemic distribution and toxicity following IN administration of AgNPs.


Assuntos
Comportamento Animal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Reconhecimento Psicológico/efeitos dos fármacos , Compostos de Prata/toxicidade , Administração Intranasal , Animais , Diferenciação Celular/efeitos dos fármacos , Plexo Corióideo/efeitos dos fármacos , Plexo Corióideo/metabolismo , Relação Dose-Resposta a Droga , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Reconhecimento Psicológico/fisiologia , Baço/citologia , Baço/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos
19.
Toxicol Sci ; 147(2): 425-35, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26139165

RESUMO

Congenital heart disease (CHD) is the most common congenital abnormality and one of the leading causes of newborn death throughout the world. Despite much emerging scientific information, the precise etiology of this disease remains elusive. Here, we show that the aryl hydrocarbon receptor (AHR) regulates the expression of crucial cardiogenesis genes and that interference with endogenous AHR functions, either by gene ablation or by agonist exposure during early development, causes overlapping structural and functional cardiac abnormalities that lead to altered fetal heart physiology, including higher heart rates, right and left ventricle dilation, higher stroke volume, and reduced ejection fraction. With striking similarity between AHR knockout (Ahr(-/-)) and agonist-exposed wild type (Ahr(+/+)) embryos, in utero disruption of endogenous AHR functions converge into dysregulation of molecular mechanisms needed for attainment and maintenance of cardiac differentiation, including the pivotal signals regulated by the cardiogenic transcription factor NKH2.5, energy balance via oxidative phosphorylation and TCA cycle and global mitochondrial function and homeostasis. Our findings suggest that AHR signaling in the developing mammalian heart is central to the regulation of pathways crucial for cellular metabolism, cardiogenesis, and cardiac function, which are potential targets of environmental factors associated with CHD.


Assuntos
Coração/embriologia , Homeostase/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/fisiologia , Animais , Ecocardiografia , Feminino , Coração/crescimento & desenvolvimento , Homeostase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mitocôndrias Cardíacas/metabolismo , Miocárdio/patologia , Miocárdio/ultraestrutura , Transdução de Sinais/fisiologia
20.
Toxicol Sci ; 146(1): 52-64, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25820237

RESUMO

Complex mixtures of environmental agents often cause mixture-specific health effects that cannot be accounted for by a single mechanism. To study the biological effects of exposure to a mixture of chromium-VI and benzo[a]pyrene (B[a]P), often found together in the environment, we exposed mice for 60 days to 0, 55, 550, or 5500 ppb Cr(VI) in drinking water followed by 90 days of coexposure to B[a]P at 0, 1.25, 12.5, or 125 mg/kg/day and examined liver and gastrointestinal (GI) tract for exposure effects. In the liver, the mixture caused more significant histopathology than expected from the sum of effects of the individual components, while in the GI tract, Cr(VI) alone caused significant enterocyte hypertrophy and increases in cell proliferation and DNA damage that were also observed in mice coexposed to B[a]P. Expression of genes involved in drug metabolism, tumor suppression, oxidative stress, and inflammation was altered in mixed exposures relative to control and to singly exposed mice. Drug metabolism and oxidative stress genes were upregulated and tumor suppressor and inflammation genes downregulated in the proximal GI tract, whereas most markers were upregulated in the distal GI tract and downregulated in the liver. Oral exposure to Cr(VI) and B[a]P mixtures appears to have tissue-specific differential consequences in liver and GI tract that cannot be predicted from the effects of each individual toxicant. Tissue specificity may be particularly critical in cases of extended exposure to mixtures of these agents, as may happen in the occupational setting or in areas where drinking water contains elevated levels of Cr(VI).


Assuntos
Benzo(a)pireno/toxicidade , Cromo/toxicidade , Trato Gastrointestinal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Animais , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...