Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1191966, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655253

RESUMO

NK-lysin is a potent antimicrobial peptide (AMP) with antimicrobial activity against bacteria, fungi, viruses, and parasites. NK-lysin is a type of granulysin, a member of the saposin-like proteins family first isolated from a pig's small intestine. In previous work, for the first time, we identified four variants of nk-lysin from Atlantic salmon (Salmo salar) using EST sequences. In the present study, we reported and characterized two additional transcripts of NK-lysin from S. salar. Besides, we evaluated the tissue distribution of three NK-lysins from S. salar and assessed the antimicrobial, hemolytic, and immunomodulatory activities and signaling pathways of three NK-lysin-derived peptides. The synthetic peptides displayed antimicrobial activity against Piscirickettsia salmonis (LF-89) and Flavobacterium psychrophilum. These peptides induced the expression of immune genes related to innate and adaptive immune responses in vitro and in vivo. The immunomodulatory activity of the peptides involves the mitogen-activated protein kinases-mediated signaling pathway, including p38, extracellular signal-regulated kinase 1/2, and/or c-Jun N-terminal kinases. Besides, the peptides modulated the immune response induced by pathogen-associated molecular patterns (PAMPs). Our findings show that NK-lysin could be a highly effective immunostimulant or vaccine adjuvant for use in fish aquaculture.


Assuntos
Peptídeos Antimicrobianos , Proteínas de Peixes , Proteolipídeos , Salmo salar , Animais , Peptídeos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/farmacologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/metabolismo , Proteínas de Peixes/farmacologia , Imunidade Inata , Proteolipídeos/metabolismo , Proteolipídeos/farmacologia , Salmo salar/imunologia , Transdução de Sinais
2.
Fish Shellfish Immunol ; 90: 199-209, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31048036

RESUMO

The study of host-parasite relationships is an integral part of the immunology of aquatic species, where the complexity of both organisms has to be overlayed with the lifecycle stages of the parasite and immunological status of the host. A deep understanding of how the parasite survives in its host and how they display molecular mechanisms to face the immune system can be applied for novel parasite control strategies. This review highlights current knowledge about salmon and sea louse, two key aquatic animals for aquaculture research worldwide. With the aim to catch the complexity of the salmon-louse interactions, molecular information gleaned through genomic studies are presented. The host recognition system and the chemosensory receptors found in sea lice reveal complex molecular components, that in turn, can be disrupted through specific molecules such as non-coding RNAs.


Assuntos
Copépodes/fisiologia , Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Interações Hospedeiro-Parasita , Salmão , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Aquicultura , Quimiotaxia/imunologia , Copépodes/genética , Copépodes/imunologia , Copépodes/microbiologia , Ectoparasitoses/parasitologia , Ectoparasitoses/fisiopatologia , Doenças dos Peixes/fisiopatologia , Imunidade Inata/fisiologia , Microbiota/fisiologia , Salmão/imunologia , Salmão/microbiologia , Salmão/fisiologia
3.
Int J Mol Sci ; 16(7): 15235-50, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26154765

RESUMO

Saxitoxin (STX) is a neurotoxin produced by dinoflagellates in diverse species, such as Alexandrium spp., and it causes paralytic shellfish poisoning (PSP) in humans after the ingestion of contaminated shellfish. Recent studies have suggested that the immune functions of bivalves could be affected by harmful algae and/or by their toxins. Herein, hemocytes are the main effector cells of the immune cellular response. In this study, we evaluated the response of hemocytes from the mussel Mytilus chilensis to STX exposure in a primary culture. Cell cultures were characterized according to size and complexity, while reactive oxygen species (ROS) production was evaluated using a dichlorofluorescein diacetate (DCFH-DA) assay. Finally, phagocytic activity was measured using both flow cytometry and fluorescence microscopy assays. Additionally, gene transcription of candidate genes was evaluated by qPCR assays. The results evidenced that exposures to different concentrations of STX (1-100 nM) for 24 h did not affect cell viability, as determined by an MTT assay. However, when hemocytes were exposed for 4 or 16 h to STX (1-100 nM), there was a modulation of phagocytic activity and ROS production. Moreover, hemocytes exposed to 100 nM of STX for 4 or 16 h showed a significant increase in transcript levels of genes encoding for antioxidant enzymes (SOD, CAT), mitochondrial enzymes (COI, COIII, CYTB, ATP6, ND1) and ion channels (K+, Ca2+). Meanwhile, C-type lectin and toll-like receptor genes revealed a bi-phase transcriptional response after 16 and 24-48 h of exposure to STX. These results suggest that STX can negatively affect the immunocompetence of M. chilensis hemocytes, which were capable of responding to STX exposure in vitro by increasing the mRNA levels of antioxidant enzymes.


Assuntos
Hemócitos/efeitos dos fármacos , Mytilus/efeitos dos fármacos , Fagocitose , Venenos/farmacologia , Saxitoxina/farmacologia , Transcriptoma , Animais , Hemócitos/imunologia , Hemócitos/metabolismo , Mytilus/imunologia , Mytilus/metabolismo , Estresse Oxidativo , Venenos/toxicidade , Saxitoxina/toxicidade , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...