Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673848

RESUMO

Alzheimer's disease is associated with protein aggregation, oxidative stress, and the role of acetylcholinesterase in the pathology of the disease. Previous investigations have demonstrated that geniposide and harpagoside protect the brain neurons, and cerium nanoparticles (CeO2 NPs) have potent redox and antioxidant properties. Thus, the effect of nanoparticles of Ce NPs and geniposide and harpagoside (GH/CeO2 NPs) on ameliorating AD pathogenesis was established on AlCl3-induced AD in mice and an aggregation proteins test in vitro. Findings of spectroscopy analysis have revealed that GH/CeO2 NPs are highly stable, nano-size, spherical in shape, amorphous nature, and a total encapsulation of GH in cerium. Treatments with CeO2 NPs, GH/CeO2 NPs, and donepezil used as positive control inhibit fibril formation and protein aggregation, protect structural modifications in the BSA-ribose system, have the ability to counteract Tau protein aggregation and amyloid-ß1-42 aggregation under fibrillation condition, and are able to inhibit AChE and BuChE. While the GH/CeO2 NPs, treatment in AD induced by AlCl3 inhibited amyloid-ß1-42, substantially enhanced the memory, the cognition coordination of movement in part AD pathogenesis may be alleviated through reducing amyloidogenic pathway and AChE and BuChE activities. The findings of this work provide important comprehension of the chemoprotective activities of iridoids combined with nanoparticles. This could be useful in the development of new therapeutic methods for the treatment of neurodegenerative diseases.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Cério , Iridoides , Fármacos Neuroprotetores , Cério/química , Cério/farmacologia , Iridoides/farmacologia , Iridoides/química , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Masculino , Nanopartículas/química , Nanopartículas Metálicas/química , Modelos Animais de Doenças
2.
Mini Rev Med Chem ; 19(20): 1666-1680, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31161986

RESUMO

BACKGROUND: Leaves of Spinacia oleracea have been widely used as vegetarian foods. Some studies on the chemical composition of spinach have shown that it contains a high content of micronutrients (vitamins and minerals), and has an important economic value with some agronomic advantages. S. oleracea in traditional medicine is reported to cure more than one health problem. OBJECTIVE: This review focuses on the ethnopharmacological uses and pharmacological and phytochemical studies of Spinacia oleracea. METHODS: Information on S. oleracea was obtained via electronic search of scientific databases such as Scopus, PubMed, Google Scholar, Scirus, Science Direct, Scielo, Web of Science, Medline, Springerlink, BioMed Central (BMC), and SciFinder for publications on this plant. In addition, books on medicinal herbs were also consulted. RESULTS: Approximately 100 chemical compounds were isolated and characterized from S. oleracea. The major active components of the plant are flavones, flavanols, methylenedioxyflavonol glucuronides, glucuronides, and carotenoids, which were extensively investigated. This review revealed potential pharmacological properties of these isolated compounds such as anti-obesity, anti-α-amylase, bileacid binding capacity, anti-mutagenic, anti-oxidant, anticancer, anti-inflammatory, cognitive and mood effect, hypoglycemic, and anti-hypertriglyceridemia. CONCLUSION: S. oleracea is an important edible plant also used for ethnomedical therapy of obesity, inflammation of lungs, lumbago, flatulence, and treatment of urinary calculi. Pharmacological and phytochemical studies of this plant including bioactives, which have been adequately studied, support its uses in traditional medicine. Additionally, prospects and future trends of this plant are proposed.


Assuntos
Antimutagênicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Spinacia oleracea/química , Animais , Antimutagênicos/química , Antimutagênicos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Alimento Funcional/análise , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
3.
Molecules ; 24(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925713

RESUMO

Previous studies have shown that accumulation of advanced glycation end products (AGEs) can be the cause of diabetic nephropathy (DN) in diabetic patients. Dihydrochalcone 3'-O-ß-d-glucopyranosyl α,4,2',4',6'-pentahydroxy⁻dihydrochalcone (1) is a powerful antiglycation compound previously isolated from Eysenhardtia polystachya. The aim was to investigate whether (1) was able to protect against diabetic nephropathy in streptozotocin (STZ)-induced diabetic mice, which displayed renal dysfunction markers such as body weight, creatinine, uric acid, serum urea, total urinary protein, and urea nitrogen in the blood (BUN). In addition, pathological changes were evaluated including glycated hemoglobin (HbA1c), advanced glycation end products (AGEs) in the kidney, as well as in circulation level and pro-inflammatory markers ICAM-1 levels in diabetic mice. After 5 weeks, these elevated markers of dihydrochalcone treatment (25, 50 and 100 mg/kg) were significantly (p < 0.05) attenuated. In addition, they ameliorate the indices of renal inflammation as indicated by ICAM-1 markers. The kidney and circulatory AGEs levels in diabetic mice were significantly (p < 0.05) attenuated by (1) treatment. Histological analysis of kidney tissues showed an important recovery in its structure compared with the diabetic group. It was found that the compound (1) attenuated the renal damage in diabetic mice by inhibiting AGEs formation.


Assuntos
Chalconas/uso terapêutico , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/tratamento farmacológico , Fabaceae/química , Produtos Finais de Glicação Avançada/sangue , Casca de Planta/química , Animais , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Chalconas/síntese química , Chalconas/química , Chalconas/farmacologia , Creatinina/sangue , Nefropatias Diabéticas/patologia , Ingestão de Líquidos , Comportamento Alimentar , Glucose/metabolismo , Hemoglobinas Glicadas/metabolismo , Mediadores da Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Niacinamida , Tamanho do Órgão/efeitos dos fármacos , Ratos , Estreptozocina , Ureia/sangue , Ácido Úrico/sangue , Urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...