Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virology ; 590: 109969, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38118269

RESUMO

Influenza A virus (IAV) is one of the major global public health concerns but the emerging resistance of IAV to currently available antivirals requires the need to identify potential alternatives. Polyphenol rich sugarcane extract (PRSE) is an extract prepared from the sugarcane plant Saccharum Officinarum. Herein we aimed to determine if PRSE had antiviral activity against IAV. We showed that treatment of IAV-infected cells with PRSE results in a dose-dependent inhibition of virus infection at concentrations that were non-cytotoxic. PRSE treatment limited the early stages of infection, reducing viral genome replication, mRNA transcription and viral protein expression. PRSE did not affect the ability of IAV to bind sialic acid or change the morphology of viral particles. Additionally, PRSE treatment attenuated the replication of multiple IAV strains of the H3N2 and H1N1 subtype. In conclusion, we show that PRSE displays antiviral activity against a broad range of IAV strains, in vitro.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Saccharum , Humanos , Polifenóis/farmacologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2 , Replicação Viral , Extratos Vegetais/farmacologia , Antivirais/farmacologia
2.
Front Microbiol ; 14: 1065609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350788

RESUMO

The development of virus-like particle (VLP) based vaccines for human papillomavirus, hepatitis B and hepatitis E viruses represented a breakthrough in vaccine development. However, for dengue and COVID-19, technical complications, such as an incomplete understanding of the requirements for protective immunity, but also limitations in processes to manufacture VLP vaccines for enveloped viruses to large scale, have hampered VLP vaccine development. Selecting the right adjuvant is also an important consideration to ensure that a VLP vaccine induces protective antibody and T cell responses. For diseases like COVID-19 and dengue fever caused by RNA viruses that exist as families of viral variants with the potential to escape vaccine-induced immunity, the development of more efficacious vaccines is also necessary. Here, we describe the development and characterisation of novel VLP vaccine candidates using SARS-CoV-2 and dengue virus (DENV), containing the major viral structural proteins, as protypes for a novel approach to produce VLP vaccines. The VLPs were characterised by Western immunoblot, enzyme immunoassay, electron and atomic force microscopy, and in vitro and in vivo immunogenicity studies. Microscopy techniques showed proteins self-assemble to form VLPs authentic to native viruses. The inclusion of the glycolipid adjuvant, α-galactosylceramide (α-GalCer) in the vaccine formulation led to high levels of natural killer T (NKT) cell stimulation in vitro, and strong antibody and memory CD8+ T cell responses in vivo, demonstrated with SARS-CoV-2, hepatitis C virus (HCV) and DEN VLPs. This study shows our unique vaccine formulation presents a promising, and much needed, new vaccine platform in the fight against infections caused by enveloped RNA viruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...