Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 57(6): 2766-2798, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32356172

RESUMO

Human pluripotent stem cells (hPSCs) are a powerful tool for modelling human development. In recent years, hPSCs have become central in cell-based therapies for neurodegenerative diseases given their potential to replace affected neurons. However, directing hPSCs into specific neuronal types is complex and requires an accurate protocol that mimics endogenous neuronal development. Here we describe step-by-step a fast feeder-free neuronal differentiation protocol to direct hPSCs to mature forebrain neurons in 37 days in vitro (DIV). The protocol is based upon a combination of specific morphogens, trophic and growth factors, ions, neurotransmitters and extracellular matrix elements. A human-induced PSC line (Ctr-Q33) and a human embryonic stem cell line (GEN-Q18) were used to reinforce the potential of the protocol. Neuronal activity was analysed by single-cell calcium imaging. At 8 DIV, we obtained a homogeneous population of hPSC-derived neuroectodermal progenitors which self-arranged in bi-dimensional neural tube-like structures. At 16 DIV, we generated hPSC-derived neural progenitor cells (NPCs) with mostly a subpallial identity along with a subpopulation of pallial NPCs. Terminal in vitro neuronal differentiation was confirmed by the expression of microtubule associated protein 2b (Map 2b) by almost 100% of hPSC-derived neurons and the expression of specific-striatal neuronal markers including GABA, CTIP2 and DARPP-32. HPSC-derived neurons showed mature and functional phenotypes as they expressed synaptic markers, voltage-gated ion channels and neurotransmitter receptors. Neurons displayed diverse spontaneous activity patterns that were classified into three major groups, namely "high", "intermediate" and "low" firing neurons. Finally, transplantation experiments showed that the NPCs survived and differentiated within mouse striatum for at least 3 months. NPCs integrated host environmental cues and differentiated into striatal medium-sized spiny neurons (MSNs), which successfully integrated into the endogenous circuitry without teratoma formation. Altogether, these findings demonstrate the potential of this robust human neuronal differentiation protocol, which will bring new opportunities for the study of human neurodevelopment and neurodegeneration, and will open new avenues in cell-based therapies, pharmacological studies and alternative in vitro toxicology.


Assuntos
Técnicas de Cultura de Células/métodos , Corpo Estriado/cirurgia , Neurogênese/fisiologia , Neurônios/transplante , Células-Tronco Pluripotentes/citologia , Animais , Linhagem Celular , Corpo Estriado/citologia , Humanos , Camundongos
2.
Neuroscience ; 333: 320-30, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27475250

RESUMO

Human Dopamine- and cAMP-regulated phosphoprotein of molecular weight 32kDa (DARPP-32, also known as PPP1R1B) gene codes for different transcripts that are mainly translated into two DARPP-32 protein isoforms, full length (fl)-DARPP-32 and truncated (t)-DARPP. The t-DARPP lacks the first 36 residues at the N-terminal, which alters its function. In the central nervous system, fl-DARPP-32 is highly expressed in GABAergic striatal medium spiny neurons (MSNs), where it integrates dopaminergic and glutamatergic input signaling. However, no information about human DARPP-32 isoform expression during MSNs maturation is available. In this study, our aim is to determine the expression of the two DARPP-32 isoforms in human fetal and adult striatal samples. We show that DARPP-32 isoform expression is differentially regulated during human striatal development, with the t-DARPP isoform being virtually absent from whole ganglionic eminence (WGE) and highly induced in the adult striatum (in both caudate and putamen). We next compared the four most common anti-DARPP-32 antibodies used in human specimens, to study their recognition of the two isoforms in fetal and adult human striatal samples by western blot and immunohistochemistry. The four antibodies specifically identify the fl-DARPP-32 in both fetal and adult samples, while t-DARPP form was only detected in adult striatal samples. In addition, the lack of t-DARPP recognition in human adult striatum by the antibody generated against the full-length domain produces in turn different efficacy by immunohistochemical analysis. In conclusion, our results show that expression of human DARPP-32 protein isoforms depends on the striatal neurodevelopmental stage with t-DARPP being specific for the human adult striatum.


Assuntos
Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Corpo Estriado/citologia , Corpo Estriado/embriologia , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos
3.
Mol Ther Methods Clin Dev ; 2: 15030, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26417608

RESUMO

A systematic characterization of the spatio-temporal gene expression during human neurodevelopment is essential to understand brain function in both physiological and pathological conditions. In recent years, stem cell technology has provided an in vitro tool to recapitulate human development, permitting also the generation of human models for many diseases. The correct differentiation of human pluripotent stem cell (hPSC) into specific cell types should be evaluated by comparison with specific cells/tissue profiles from the equivalent adult in vivo organ. Here, we define by a quantitative high-throughput gene expression analysis the subset of specific genes of the whole ganglionic eminence (WGE) and adult human striatum. Our results demonstrate that not only the number of specific genes is crucial but also their relative expression levels between brain areas. We next used these gene profiles to characterize the differentiation of hPSCs. Our findings demonstrate a temporal progression of gene expression during striatal differentiation of hPSCs from a WGE toward an adult striatum identity. Present results establish a gene expression profile to qualitatively and quantitatively evaluate the telencephalic hPSC-derived progenitors eventually used for transplantation and mature striatal neurons for disease modeling and drug-screening.

4.
Nat Struct Mol Biol ; 19(7): 664-70, 2012 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-22659877

RESUMO

Epigenetic deregulation at a number of genomic loci is one of the hallmarks of cancer. A role for some RNA molecules in guiding repressive polycomb complex PRC2 to specific chromatin regions has been proposed. Here we use an in vivo cross-linking method to detect and identify direct PRC2-RNA interactions in human cancer cells, revealing a number of intronic RNA sequences capable of binding to the core component EZH2 and regulating the transcriptional output of its genomic counterpart. Overexpression of EZH2-bound intronic RNA for the H3K4 methyltransferase gene SMYD3 is concomitant with an increase in EZH2 occupancy throughout the corresponding genomic fragment and is sufficient to reduce levels of the endogenous transcript and protein, resulting in reduced growth capability in cell culture and animal models. These findings reveal the role of intronic RNAs in fine-tuning gene expression regulation at the level of transcriptional control.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Epigênese Genética , Regulação da Expressão Gênica/fisiologia , Íntrons , RNA/fisiologia , Fatores de Transcrição/fisiologia , Animais , Proteínas de Ligação a DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Camundongos , Camundongos Nus , Complexo Repressor Polycomb 2 , Ligação Proteica , RNA/metabolismo , Fatores de Transcrição/metabolismo
5.
Proc Natl Acad Sci U S A ; 108(11): 4394-9, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21368194

RESUMO

MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression at the posttranscriptional level and are critical for many cellular pathways. The disruption of miRNAs and their processing machineries also contributes to the development of human tumors. A common scenario for miRNA expression in carcinogenesis is emerging that shows that impaired miRNA production and/or down-regulation of these transcripts occurs in many neoplasms. Several of these lost miRNAs have tumor-suppressor features, so strategies to restore their expression globally in malignancies would be a welcome addition to the current therapeutic arsenal against cancer. Herein, we show that the small molecule enoxacin, a fluoroquinolone used as an antibacterial compound, enhances the production of miRNAs with tumor suppressor functions by binding to the miRNA biosynthesis protein TAR RNA-binding protein 2 (TRBP). The use of enoxacin in human cell cultures and xenografted, orthotopic, and metastatic mouse models reveals a TRBP-dependent and cancer-specific growth-inhibitory effect of the drug. These results highlight the key role of disrupted miRNA expression patterns in tumorigenesis, and suggest a unique strategy for restoring the distorted microRNAome of cancer cells to a more physiological setting.


Assuntos
Antineoplásicos/farmacologia , Enoxacino/farmacologia , MicroRNAs/metabolismo , Neoplasias/patologia , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , MicroRNAs/biossíntese , Mutação/genética , Neoplasias/metabolismo , Ligação Proteica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...