Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Oncol ; 32(3): 200836, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39050990

RESUMO

The successful trajectory of liposome-encapsulated doxorubicin (e.g., Doxil, which has been approved by the U.S. Food and Drug Administration) as an anticancer nanodrug in clinical applications is contradicted by in vitro cell viability data that highlight its reduced efficacy in promoting cell death compared with non-encapsulated doxorubicin. No reports to date have provided a mechanistic explanation for this apparently discordant evidence. Taking advantage of doxorubicin intrinsic fluorescence and time-resolved optical microscopy, we analyze the uptake and intracellular processing of liposome-encapsulated doxorubicin (L-DOX) in several in vitro cellular models. Cell entry of L-DOX was found to lead to a rapid (seconds to minutes), energy- and temperature-independent release of crystallized doxorubicin nanorods into the cell cytoplasm, which then disassemble into a pool of fibril-shaped derivatives capable of crossing the cellular membrane while simultaneously releasing active drug monomers. Thus, a steady state is rapidly established in which the continuous supply of crystal nanorods from incoming liposomes is counteracted by a concentration-guided efflux in the extracellular medium of fibril-shaped derivatives and active drug monomers. These results demonstrate that liposome-mediated delivery is constitutively less efficient than isolated drug in establishing favorable conditions for drug retention in the cell. In addition to explaining previous contradictory evidence, present results impose careful rethinking of the synthetic identity of encapsulated anticancer drugs.

2.
Nanoscale ; 14(25): 8901-8905, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35719059

RESUMO

The supramolecular organization of Doxorubicin (DOX) within the standard Doxoves® liposomal formulation (DOX®) is investigated using visible light and phasor approach to fluorescence lifetime imaging (phasor-FLIM). First, the phasor-FLIM signature of DOX® is resolved into the contribution of three co-existing fluorescent species, each with its characteristic mono-exponential lifetime, namely: crystallized DOX (DOXc, 0.2 ns), free DOX (DOXf, 1.0 ns), and DOX bound to the liposomal membrane (DOXb, 4.5 ns). Then, the exact molar fractions of the three species are determined by combining phasor-FLIM with quantitative absorption/fluorescence spectroscopy on DOXc, DOXf, and DOXb pure standards. The final picture on DOX® comprises most of the drug in the crystallized form (∼98%), with the remaining fractions divided between free (∼1.4%) and membrane-bound drug (∼0.7%). Finally, phasor-FLIM in the presence of a DOX dynamic quencher allows us to suggest that DOXf is both encapsulated and non-encapsulated, and that DOXb is present on both liposome-membrane leaflets. We argue that the present experimental protocol can be applied to the investigation of the supramolecular organization of encapsulated luminescent drugs/molecules all the way from the production phase to their state within living matter.


Assuntos
Doxorrubicina , Polietilenoglicóis , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Lipossomos , Microscopia de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...