Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003680

RESUMO

In this work, the plasmonic and photothermal effects of CuS nanoparticles biosynthesized from acid mine drainage (AMD) were studied. CuS were formed by delivering the H2S generated by a sulfidogenic bioreactor to an off-line system containing the AMD. The precipitates collected after contact for an hour were washed and physico-chemically characterized, showing a nanoparticle with a mean diameter of 33 nm, crystalline nature and semiconductor behavior with a direct band gap of 2.2 eV. Moreover, the CuS nanoparticles exhibited localized surface plasmonic resonance in the near infrared range, with a high absorption band centered at 973 nm of wavelength, which allowed an increase in the temperature of the surrounding media under irradiation. Finally, the cytotoxicity of the CuS nanoparticles as well as their potential use as part of drug delivery platforms were investigated.


Assuntos
Cobre , Nanopartículas , Cobre/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Temperatura , Fototerapia
2.
Biology (Basel) ; 13(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38248446

RESUMO

Colorectal cancer (CRC) is one of the most diagnosed cancers worldwide, with a high incidence and mortality rate when diagnosed late. Currently, the methods used in healthcare to diagnose CRC are the fecal occult blood test, flexible sigmoidoscopy, and colonoscopy. However, the lack of sensitivity and specificity and low population adherence are driving the need to implement other technologies that can identify biomarkers that not only help with early CRC detection but allow for the selection of more personalized treatment options. In this regard, the implementation of omics technologies, which can screen large pools of biological molecules, coupled with molecular validation, stands out as a promising tool for the discovery of new biomarkers from biopsied tissues or body fluids. This review delves into the current state of the art in the identification of novel CRC biomarkers that can distinguish cancerous tissue, specifically from fecal samples, as this could be the least invasive approach.

3.
Elife ; 112022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35060900

RESUMO

Restoring damaged ß-cells in diabetic patients by harnessing the plasticity of other pancreatic cells raises the questions of the efficiency of the process and of the functionality of the new Insulin-expressing cells. To overcome the weak regenerative capacity of mammals, we used regeneration-prone zebrafish to study ß-cells arising following destruction. We show that most new insulin cells differ from the original ß-cells as they coexpress Somatostatin and Insulin. These bihormonal cells are abundant, functional and able to normalize glycemia. Their formation in response to ß-cell destruction is fast, efficient, and age-independent. Bihormonal cells are transcriptionally close to a subset of δ-cells that we identified in control islets and that are characterized by the expression of somatostatin 1.1 (sst1.1) and by genes essential for glucose-induced Insulin secretion in ß-cells such as pdx1, slc2a2 and gck. We observed in vivo the conversion of monohormonal sst1.1-expressing cells to sst1.1+ ins + bihormonal cells following ß-cell destruction. Our findings support the conclusion that sst1.1 δ-cells possess a pro-ß identity enabling them to contribute to the neogenesis of Insulin-producing cells during regeneration. This work unveils that abundant and functional bihormonal cells benefit to diabetes recovery in zebrafish.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Células Secretoras de Somatostatina/metabolismo , Animais , Feminino , Masculino , Pâncreas/citologia , Somatostatina/metabolismo , Peixe-Zebra
4.
Wound Repair Regen ; 26(2): 238-244, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29663654

RESUMO

The zebrafish is a popular animal model with well-known regenerative capabilities. To study regeneration in this fish, the nitroreductase/metronidazole-mediated system is widely used for targeted ablation of various cell types. Nevertheless, we highlight here some variability in ablation efficiencies with the metronidazole prodrug that led us to search for a more efficient and reliable compound. Herein, we present nifurpirinol, another nitroaromatic antibiotic, as a more potent prodrug compared to metronidazole to trigger cell-ablation in nitroreductase expressing transgenic models. We show that nifurpirinol induces robust and reliable ablations at concentrations 2,000 fold lower than metronidazole and three times below its own toxic concentration. We confirmed the efficiency of nifurpirinol in triggering massive ablation of three different cell types: the pancreatic beta cells, osteoblasts, and dopaminergic neurons. Our results identify nifurpirinol as a very potent prodrug for the nitroreductase-mediated ablation system and suggest that its use could be extended to many other cell types, especially if difficult to ablate, or when combined pharmacological treatments are desired.


Assuntos
Metronidazol/metabolismo , Nitrofuranos/metabolismo , Nitrorredutases/metabolismo , Regeneração/fisiologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Metronidazol/farmacologia , Modelos Animais , Nitrofuranos/farmacologia , Nitrorredutases/genética , Regeneração/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...