Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 13(614): eabg9478, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34613812

RESUMO

Dengue virus serotypes 1 to 4 (DENV1­4) and Zika virus (ZIKV) are mosquito-borne flaviviruses that induce both virus-specific and broadly reactive antibodies. A first DENV infection is thought to induce antibodies that wane over 2 years to titers that can subsequently enhance severe dengue disease. Secondary DENV infection with a different serotype is thought to induce stable, cross-serotype protective antibodies. Low dengue disease incidence after the recent Zika pandemic led to the hypothesis that ZIKV infection is also transiently cross protective. We investigated antibody kinetics in 4189 children up to 11 years after one and multiple DENV and ZIKV infections in longitudinal cohorts in Nicaragua. We used a DENV inhibition enzyme-linked immunosorbent assay (iELISA), which measures antibodies associated with protection against dengue and Zika disease and with enhancement of dengue disease severity. Unexpectedly, we found that overall DENV iELISA titers stabilized by 8 months after primary DENV infection to a half-life longer than a human life and waned, although gradually, after secondary DENV infection. Similarly, DENV iELISA titers were stable or rose after primary ZIKV infection but declined in individuals with histories of DENV and ZIKV infection. In contrast, kinetics of anti-ZIKV antibodies after ZIKV infection were similar regardless of prior DENV immunity. We observed heterogeneity in DENV iELISA titer, suggesting that individual antibody titer set point, rather than waning, is important for future dengue disease risk. Together, these findings change our understanding of anti-flavivirus antibody kinetics and have implications for measuring vaccine efficacy and for predicting future dengue and Zika outbreaks.


Assuntos
Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Anticorpos Bloqueadores , Anticorpos Neutralizantes , Anticorpos Antivirais , Criança , Reações Cruzadas , Humanos
2.
EBioMedicine ; 72: 103596, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34627081

RESUMO

BACKGROUND: Nicaragua experienced a large Zika epidemic in 2016, with up to 50% of the population in Managua infected. With the domesticated Aedes aegypti mosquito as its vector, it is widely assumed that Zika virus transmission occurs within the household and/or via human mobility. We investigated these assumptions by using viral genomes to trace Zika transmission spatially. METHODS: We analysed serum samples from 119 paediatric Zika cases participating in the long-standing Paediatric Dengue Cohort Study in Managua, which was expanded to include Zika in 2015. An optimal spanning directed tree was constructed by minimizing the differences in viral sequence diversity composition between patient nodes, where low-frequency variants were used to increase the resolution of the inferred Zika outbreak dynamics. FINDINGS: Out of the 18 houses where pairwise difference in sample collection dates among all the household members was within 30 days, we only found two where viruses from individuals within the same household were up to 10th-most closely linked to each other genetically. We also identified a substantial number of transmission events involving long geographical distances (n=30), as well as potential super-spreading events in the estimated transmission tree. INTERPRETATION: Our finding highlights that community transmission, often involving long geographical distances, played a much more important role in epidemic spread than within-household transmission. FUNDING: This study was supported by an NUS startup grant (OMS) and grants R01 AI099631 (AB), P01 AI106695 (EH), P01 AI106695-03S1 (FB), and U19 AI118610 (EH) from the US National Institutes of Health.


Assuntos
Genoma Viral/genética , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão , Zika virus/genética , Adolescente , Aedes/virologia , Animais , Criança , Pré-Escolar , Estudos de Coortes , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue/genética , Surtos de Doenças , Epidemias , Feminino , Humanos , Masculino , Mosquitos Vetores/virologia , Nicarágua/epidemiologia
3.
Front Immunol ; 12: 703887, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367162

RESUMO

The only licensed dengue vaccine, Dengvaxia®, increases risk of severe dengue when given to individuals without prior dengue virus (DENV) infection but is protective against future disease in those with prior DENV immunity. The World Health Organization has recommended using rapid diagnostic tests (RDT) to determine history of prior DENV infection and suitability for vaccination. Dengue experts recommend that these assays be highly specific (≥98%) to avoid erroneously vaccinating individuals without prior DENV infection, as well as be sensitive enough (≥95%) to detect individuals with a single prior DENV infection. We evaluated one existing and two newly developed anti-flavivirus RDTs using samples collected >6 months post-infection from individuals in non-endemic and DENV and ZIKV endemic areas. We first evaluated the IgG component of the SD BIOLINE Dengue IgG/IgM RDT, which was developed to assist in confirming acute/recent DENV infections (n=93 samples). When evaluated following the manufacturer's instructions, the SD BIOLINE Dengue RDT had 100% specificity for both non-endemic and endemic samples but low sensitivity for detecting DENV seropositivity (0% non-endemic, 41% endemic). Sensitivity increased (53% non-endemic, 98% endemic) when tests were allowed to run beyond manufacturer recommendations (0.5 up to 3 hours), but specificity decreased in endemic samples (36%). When tests were evaluated using a quantitative reader, optimal specificity could be achieved (≥98%) while still retaining sensitivity at earlier timepoints in non-endemic (44-88%) and endemic samples (31-55%). We next evaluated novel dengue and Zika RDTs developed by Excivion to detect prior DENV or ZIKV infections and reduce cross-flavivirus reactivity (n=207 samples). When evaluated visually, the Excivion Dengue RDT had sensitivity and specificity values of 79%, but when evaluated with a quantitative reader, optimal specificity could be achieved (≥98%) while still maintaining moderate sensitivity (48-75%). The Excivion Zika RDT had high specificity (>98%) and sensitivity (>93%) when evaluated quantitatively, suggesting it may be used alongside dengue RDTs to minimize misclassification due to cross-reactivity. Our findings demonstrate the potential of RDTs to be used for dengue pre-vaccination screening to reduce vaccine-induced priming for severe dengue and show how assay design adaptations as well quantitative evaluation can further improve RDTs for this purpose.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Dengue/metabolismo , Dengue , Testes Diagnósticos de Rotina , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Dengue/sangue , Dengue/diagnóstico , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/efeitos adversos , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...