Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 7: 53, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33501221

RESUMO

Many real-world applications have been suggested in the swarm robotics literature. However, there is a general lack of understanding of what needs to be done for robot swarms to be useful and trusted by users in reality. This paper aims to investigate user perception of robot swarms in the workplace, and inform design principles for the deployment of future swarms in real-world applications. Three qualitative studies with a total of 37 participants were done across three sectors: fire and rescue, storage organization, and bridge inspection. Each study examined the users' perceptions using focus groups and interviews. In this paper, we describe our findings regarding: the current processes and tools used in these professions and their main challenges; attitudes toward robot swarms assisting them; and the requirements that would encourage them to use robot swarms. We found that there was a generally positive reaction to robot swarms for information gathering and automation of simple processes. Furthermore, a human in the loop is preferred when it comes to decision making. Recommendations to increase trust and acceptance are related to transparency, accountability, safety, reliability, ease of maintenance, and ease of use. Finally, we found that mutual shaping, a methodology to create a bidirectional relationship between users and technology developers to incorporate societal choices in all stages of research and development, is a valid approach to increase knowledge and acceptance of swarm robotics. This paper contributes to the creation of such a culture of mutual shaping between researchers and users, toward increasing the chances of a successful deployment of robot swarms in the physical realm.

2.
Sensors (Basel) ; 16(10)2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27690058

RESUMO

In the mobile computing era, smartphones have become instrumental tools to develop innovative mobile context-aware systems. In that sense, their usage in the vehicular domain eases the development of novel and personal transportation solutions. In this frame, the present work introduces an innovative mechanism to perceive the current kinematic state of a vehicle on the basis of the accelerometer data from a smartphone mounted in the vehicle. Unlike previous proposals, the introduced architecture targets the computational limitations of such devices to carry out the detection process following an incremental approach. For its realization, we have evaluated different classification algorithms to act as agents within the architecture. Finally, our approach has been tested with a real-world dataset collected by means of the ad hoc mobile application developed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...