Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 71(12): 1515-1528, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34233125

RESUMO

Radon (Rn) is a natural and toxic radioactive gas that accumulates indoors, mainly in low-ventilated underground floors and basements. Several factors make prediction of indoor Rn exposure in enclosed spaces challenging. In this study, we investigated the influence of soil, geology, topography, atmospheric variables, radiation, urbanization, community economic well-being, and monthly and yearly variations on indoor Rn concentrations. We analyzed 7,515 monthly indoor Rn measurements in 623 zip codes from two U.S. States (Michigan and Minnesota) during 2005-2018 using a random forest model. Using Shapley Additive exPlanations (SHAP) values we investigated the contribution of each factor using variable importance and partial dependence plots. Factors that predict indoor Rn differed between states, with topographical, geological and soil composition being most influential. Cross-validated Pearson correlation between predictions and measurements was 0.68 (RMSE = 47.8 Bq/m3) in Minnesota, and 0.67 (RMSE = 52.5 Bq/m3) in Michigan. Our results underline the importance of soil structure for radon exposure, presumably due to strapped Rn in soil. The differences across states also suggest that Rn studies performing model development should consider geographical variables, along with other factors. As indoor Rn levels are multifactorial, an understanding of the factors that influence its emanation and build up indoors will help better assess spatial and temporal variations, which will be useful to improve prevention and mitigation control strategies.Implications: Radon exposure has become a year-round problem as people spend most of their time indoors. In North America, radon exposure is increasing over time and awareness related to its health effects remains low in the general population. Several factors make prediction of indoor radon exposure in enclosed spaces challenging. In this study, we used random forest to investigate the influence of factors on indoor radon in the Midwest United States. We found that topography, geology, and soil composition were the most influential factors on indoor radon levels. These results will help better assess spatial and temporal variations, which will further help better prevention and mitigation control strategies.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Habitação , Humanos , Radônio/análise , Estados Unidos
2.
Environ Int ; 131: 104968, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295642

RESUMO

Children spend over 6 h a day in schools and have higher asthma morbidity from school environmental exposures. The present study aims to determine indoor and outdoor possible sources affecting indoor PM2.5 in classrooms. Weeklong indoor PM2.5 samples were collected from 32 inner-city schools from a Northeastern U.S. community during three seasons (fall, winter and spring) during the years 2009 to 2013. Concurrently, daily outdoor PM2.5 samples were taken at a central monitoring site located at a median distance of 4974 m (range 1065-11,592 m) from the schools. Classroom indoor concentrations of PM2.5 (an average of 5.2 µg/m3) were lower than outdoors (an average of 6.5 µg/m3), and these averages were in the lower range compared to the findings in other schools' studies. The USEPA PMF model was applied to the PM2.5 components measured simultaneously from classroom indoor and outdoor to estimate the source apportionment. The major sources (contributions) identified across all seasons of indoor PM2.5 were secondary pollution (41%) and motor vehicles (17%), followed by Calcium (Ca)-rich particles (12%), biomass burning (15%), soil dust (6%), and marine aerosols (4%). Likewise, the major sources of outdoor PM2.5 across all seasons were secondary pollution (41%) and motor vehicles (26%), followed by biomass burning (17%), soil dust (7%), road dust (3%), and marine aerosols (1%). Secondary pollution was the greatest contributor to indoor and outdoor PM2.5 over all three seasons, with the highest contribution during spring with 53% to indoor PM2.5 and 45% to outdoor PM2.5. Lower contributions of this source during fall and winter are most likely attributed to less infiltration indoors. In contrast, the indoor contribution of motor vehicles source was highest in the fall (29%) and winter (25%), which was presumably categorized by a local source. From the relationship between indoor-to-outdoor sulfur ratios and each source contribution, we also estimated the local and regional influence on indoor PM2.5 concentration. Overall, the observed differences to indoor PM2.5 are related to seasonality, and the distinct characteristics and behavior of each classroom/school.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Material Particulado/química , Instituições Acadêmicas , Biomassa , Criança , Poeira , Exposição Ambiental/análise , Humanos , Tamanho da Partícula , Estações do Ano , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...