Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38059605

RESUMO

Two novel Micromonospora strains, STR1-7T and STR1S-6T, were isolated from the rhizosphere of a Parastrephia quadrangularis plant growing in the Salar de Tara region of the Atacama Desert, Chile. Chemotaxonomic, cultural and phenotypic features confirmed that the isolates belonged to the genus Micromonospora. They grew from 20 to 37 °C, from pH7 to 8 and in the presence of up to 3 %, w/v NaCl. The isolates formed distinct branches in Micromonospora gene trees based on 16S rRNA gene sequences and on a multi-locus sequence analysis of conserved house-keeping genes. A phylogenomic tree generated from the draft genomes of the isolates and their closest phylogenetic neighbours showed that isolate STR1-7T is most closely related to Micromonospora orduensis S2509T, and isolate STR1S-6 T forms a distinct branch that is most closely related to 12 validly named Micromonospora species, including Micromonospora saelicesensis the earliest proposed member of the group. The isolates were separated from one another and from their closest phylogenomic neighbours using a combination of chemotaxonomic, genomic and phenotypic features, and by low average nucleotide index and digital DNA-DNA hybridization values. Consequently, it is proposed that isolates STR1-7T and STR1S-6T be recognized as representing new species in the genus Micromonospora, namely as Micromonospora parastrephiae sp. nov. and Micromonospora tarensis sp. nov.; the type strains are STR1-7T (=CECT 9665T=LMG 30768T) and STR1S-6T (=CECT 9666T=LMG 30770T), respectively. Genome mining showed that the isolates have the capacity to produce novel specialized metabolites, notably antibiotics and compounds that promote plant growth, as well as a broad-range of stress-related genes that provide an insight into how they cope with harsh abiotic conditions that prevail in high-altitude Atacama Desert soils.


Assuntos
Fabaceae , Micromonospora , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Análise de Sequência de DNA , Chile , Filogenia , Rizosfera , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases
2.
Artigo em Inglês | MEDLINE | ID: mdl-37754346

RESUMO

Four Gram-positive, aerobic, catalase- and oxidase-negative, rod-shaped, motile endophytic bacterial strains, designated NM3R9T, NE1TT3, NE2TL11 and NE2HP2T, were isolated from the inner tissues (leaf and stem) of Sphaeralcea angustifolia and roots of Prosopis laevigata. They were characterized using a polyphasic approach, which revealed that they represent two novel Microbacterium species. Phylogenetic analysis based on 16S rRNA gene sequencing showed that the species closest to NE2HP2T was Microbacterium arborescens DSM 20754T (99.6 %) and that closest to NM3R9T, NE2TL11 and NE2TT3 was Microbacterium oleivorans NBRC 103075T (97.4 %). The whole-genome average nucleotide identity value between strain NM3R9T and Microbacterium imperiale DSM 20530T was 90.91 %, and that between strain NE2HP2T and M. arborecens DSM 20754T was 91.03 %. Digital DNA-DNA hybridization showed values of less than 70 % with the type strains of related species. The polar lipids present in both strains included diphosphatidylglycerol, phosphatidylglycerol, glycolipids and unidentified lipids, whereas the major fatty acids included anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and C16 : 0. Whole-cell sugars included mannose, rhamnose and galactose. Strains NM3R9T and NE2HP2T showed physiological characteristics different from those present in closely related Microbacterium species. According to the taxonomic analysis, both strains belong to two novel species. The name Microbacterium plantarum sp. nov. is proposed for strain NE2HP2T (=LMG 30875T=CCBAU 101117T) and Microbacterium thalli sp. nov. for strains NM3R9T (=LMG 30873T=CCBAU 101116T), NE1TT3 (=CCBAU 101114) and NE2TL11 (=CCBAU 101115).


Assuntos
Actinomycetales , Prosopis , Ácidos Graxos/química , Fosfolipídeos/análise , Prosopis/genética , Microbacterium , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Análise de Sequência de DNA , Vitamina K 2
3.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298114

RESUMO

A phyloprofile of Frankia genomes was carried out to identify those genes present in symbiotic strains of clusters 1, 1c, 2 and 3 and absent in non-infective strains of cluster 4. At a threshold of 50% AA identity, 108 genes were retrieved. Among these were known symbiosis-associated genes such as nif (nitrogenase), and genes which are not know as symbiosis-associated genes such as can (carbonic anhydrase, CAN). The role of CAN, which supplies carbonate ions necessary for carboxylases and acidifies the cytoplasm, was thus analyzed by staining cells with pH-responsive dyes; assaying for CO2 levels in N-fixing propionate-fed cells (that require a propionate-CoA carboxylase to yield succinate-CoA), fumarate-fed cells and N-replete propionate-fed cells; conducting proteomics on N-fixing fumarate and propionate-fed cells and direct measurement of organic acids in nodules and in roots. The interiors of both in vitro and nodular vesicles were found to be at a lower pH than that of hyphae. CO2 levels in N2-fixing propionate-fed cultures were lower than in N-replete ones. Proteomics of propionate-fed cells showed carbamoyl-phosphate synthase (CPS) as the most overabundant enzyme relative to fumarate-fed cells. CPS combines carbonate and ammonium in the first step of the citrulline pathway, something which would help manage acidity and NH4+. Nodules were found to have sizeable amounts of pyruvate and acetate in addition to TCA intermediates. This points to CAN reducing the vesicles' pH to prevent the escape of NH3 and to control ammonium assimilation by GS and GOGAT, two enzymes that work in different ways in vesicles and hyphae. Genes with related functions (carboxylases, biotin operon and citrulline-aspartate ligase) appear to have undergone decay in non-symbiotic lineages.


Assuntos
Compostos de Amônio , Anidrases Carbônicas , Frankia , Nitrogênio/metabolismo , Frankia/fisiologia , Fixação de Nitrogênio/genética , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Citrulina/metabolismo , Dióxido de Carbono/metabolismo , Propionatos/metabolismo , Citoplasma/metabolismo , Compostos de Amônio/metabolismo , Concentração de Íons de Hidrogênio , Simbiose
4.
Mol Plant Microbe Interact ; 35(12): 1096-1108, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36102948

RESUMO

The response of Alnus glutinosa to Frankia alni ACN14a is driven by several sequential physiological events from calcium spiking and root-hair deformation to the development of the nodule. Early stages of actinorhizal symbiosis were monitored at the transcriptional level to observe plant host responses to Frankia alni. Forty-two genes were significantly upregulated in inoculated compared with noninoculated roots. Most of these genes encode proteins involved in biological processes induced during microbial infection, such as oxidative stress or response to stimuli, but a large number of them are not differentially modulated or downregulated later in the process of nodulation. In contrast, several of them remained upregulated in mature nodules, and this included the gene most upregulated, which encodes a nonspecific lipid transfer protein (nsLTP). Classified as an antimicrobial peptide, this nsLTP was immunolocalized on the deformed root-hair surfaces that are points of contact for Frankia spp. during infection. Later in nodules, it binds to the surface of F. alni ACN14a vesicles, which are the specialized cells for nitrogen fixation. This nsLTP, named AgLTP24, was biologically produced in a heterologous host and purified for assay on F. alni ACN14a to identify physiological effects. Thus, the activation of the plant immunity response occurs upon first contact, while the recognition of F. alni ACN14a genes switches off part of the defense system during nodulation. AgLTP24 constitutes a part of the defense system that is maintained all along the symbiosis, with potential functions such as the formation of infection threads or nodule primordia to the control of F. alni proliferation. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Frankia , Raízes de Plantas , Frankia/fisiologia , Simbiose/genética , Fixação de Nitrogênio
5.
Diagnostics (Basel) ; 12(4)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35453945

RESUMO

The present study aimed to compare by ultrasound imaging (USI) the tibial posterior (TP), medial gastrocnemius (MG) and soleus muscle in patients with and without plantar fasciitis (PF). A sample of 42 individuals was recruited and divided into two groups: PF and a healthy group. The thickness, cross-sectional area (CSA), echointensity and echovariation were assessed in both groups by USI. TP, soleus and MG variables did not report differences (p > 0.05) for thickness and CSA. For the echotexture parameters significant differences were found for MG echointensity (p = 0.002), MG echovariation (p = 0.002) and soleus echointensity (p = 0.012). Non-significant differences (p > 0.05) were reported for soleus echovariation, TP echointensity and TP echovariation variables. The thickness and CSA of the TP, GM and soleus muscle did not show significant differences between individuals with and without PF measured by USI. Muscle quality assessment reported an increase of the MG echointensity and echovariation, as well as a decrease of echointensity of the soleus muscle in the PF group with respect to the healthy group. Therefore, the evaluation of the structure and muscle quality of the extrinsic foot muscles may be beneficial for the diagnosis and monitoring the physical therapy interventions.

6.
Healthcare (Basel) ; 10(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35327004

RESUMO

Objective: The primary aim of the present study was to compare the echo intensity (EI) and echovariation (EV) of the intrinsic foot muscles (IFMs) between individuals with and without plantar fasciitis (PF), using ultrasound imaging. The secondary objective was to study the intra-rater reliability of the echotexture variables. Methods: A case−control study was conducted with 64 participants, who were divided into the following two groups: A, the PF group (n = 32); B, the healthy group (n = 32). Results: The comparison between the two groups did not identify significant differences (p > 0.05) between the flexor hallucis brevis (FHB), flexor digitorum brevis (FDB), quadratus plantae (QP) and abductor hallucis brevis (AHB) variables for the EI and EV. Moreover, excellent intra-rater reliability was reported for the following ultrasound imaging EI variables: ABH (ICC = 0.951), FHB (ICC = 0.949), FDB (ICC = 0.981) and QP (ICC = 0.984). Conclusions: The muscle quality assessment using the EI and EV variables did not identify differences in the FHB, FDB, AHB and QP muscles between individuals with and without PF through USI evaluation. The reliability of all the IFM measurements was reported to be excellent.

7.
Dis Mon ; 68(10): 101314, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34996610

RESUMO

Tendinopathy is labeled by many authors as a troublesome, common pathology, present in up to 30% medical care consultations involving musculoskeletal conditions. Despite the lasting interest for addressing tendon pathology, current researchers agree that even the exact definition of the term tendinopathy is unclear. Tendinopathy is currently diagnosed as a clinical hypothesis based on the patient symptoms and physical context. One of the main goals of current clinical management is to personalize treatment approaches to adapt them to the many different needs of the population. Tendons are complex structures that unite muscles and bones with two main objectives: to transmit forces and storage and release energy. Regarding the tensile properties of the tendons, several authors argued that tendons have higher tensile strength compared with muscles, however, are considered less flexible. Tendinopathy is an accepted term which is used to indicated a variety of tissue conditions that appear in injured tendons and describes a non-rupture damage in the tendon or paratendon, which is intensified with mechanical loading Even when the pathoetiology of tendinopathy is unclear, there is a wide array of treatments available to treat and manage tendinopathy. Although tendinitis usually debuts with an inflammatory response, the majority of chronic tendinopathies do not present inflammation and so the choosing of treatment should vary depending on severity, compliance, pain and duration of symptoms. The purpose of this article is to review and provide an overview about the currently research of the tendon diagnosis, management and etiology.


Assuntos
Tendinopatia , Humanos , Dor , Tendinopatia/diagnóstico , Tendinopatia/patologia , Tendinopatia/terapia , Tendões/patologia
8.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36748590

RESUMO

The name Micromonospora endophytica has been used for three different organisms. The first organism with this name is the species represented by strain DCWR9-8-2T, a species published in 2015 but whose name was never validated. In 2019 the type species of the genus Jishengella was reclassified into the genus Micromonospora, while maintaining its original epithet, thus establishing the second group of organisms known as M. endophytica, but the first for which the name was validated. Additionally, in 2018 the reclassification of the genus Verrucosispora into the genus Micromonospora was proposed, but a new epithet has not been specified for the species named Verrucosispora endophytica, which remains an orphaned species. Therefore, it is necessary to propose new names that can unequivocally identify these taxa. We have analysed the taxonomic position of the strains, comparing them with the species with valid published names of the genus Micromonospora. We here propose Micromonospora thawaii sp. nov. for the species represented by strain DCWR9-8-2T, and Micromonospora grosourdyae nom. nov. and Micromonospora sonchi comb. nov. for the two orphaned species of Verrucosispora, V. endophytica and Verrucosispora sonchi, respectively. Genomic analysis also showed that M. trujilloniae is a later heterotypic synonym of M. andamanensis.


Assuntos
Micromonospora , Ácidos Graxos/química , Filogenia , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases
9.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34665118

RESUMO

Strain EAR8T is a root endophyte isolated from Arthrocnemum macrostachyum plants collected from the Odiel marshes, Huelva (Spain). It presented in vitro plant growth-promoting properties and improved the plant growth and heavy metal accumulation in polluted soils playing an important role in phytoremediation strategies. Phenotypically, strain EAR8T cells were Gram-positive, aerobic and non-motile rods with terminal oval endospores and non-swollen sporangia which form beige, opaque, butyrous, raised and irregular colonies with undulate margins. The strain was able to grow between 15-45 °C, at pH 6.0-9.0 and tolerated 0-25 % NaCl (w/v) showing optimal growth conditions on trypticase soy agar plates supplemented with 2.5 % NaCl (w/v) at pH 7.0 and 37 °C for 24 h. Chemotaxonomic analyses showed that the isolate has meso-diaminopimelic acid as the peptidoglycan in the cell wall and MK-7 as the major respiratory quinone. The predominant fatty acids were anteiso-C15 : 0 and iso-C15 : 0 and the polar lipid profile was composed of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phylogenetic analyses based on the whole proteomes of closest sequenced relatives confirmed that strain EAR8T is affiliated to the genus Rossellomorea and forms a clade with Rossellomorea vietnamensis 15-1T with maximum support. Genome analyses showed that EAR8T has indole-3-acetic acid and siderophore biosynthesis and transporters genes and genes related to resistance against heavy metals. Phenotypic and phylogenomic comparative studies suggested that strain EAR8T is a new representative of the genus Rossellomorea and the name Rossellomorea arthrocnemi sp. nov. is proposed. Type strain is EAR8T (=CECT 9072T=DSM 103900T).


Assuntos
Bacillaceae/classificação , Chenopodiaceae/microbiologia , Metais Pesados , Filogenia , Microbiologia do Solo , Poluentes do Solo , Bacillaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Biodegradação Ambiental , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Endófitos/classificação , Endófitos/isolamento & purificação , Ácidos Graxos/química , Peptidoglicano/química , Fosfolipídeos/química , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha , Vitamina K 2/análogos & derivados , Vitamina K 2/química
10.
Plants (Basel) ; 9(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322342

RESUMO

Pisum sativum L. (pea) is one of the most cultivated grain legumes in European countries due to the high protein content of its seeds. Nevertheless, the rhizobial microsymbionts of this legume have been scarcely studied in these countries. In this work, we analyzed the rhizobial strains nodulating the pea in a region from Northwestern Spain, where this legume is widely cultivated. The isolated strains were genetically diverse, and the phylogenetic analysis of core and symbiotic genes showed that these strains belong to different clusters related to R. laguerreae sv. viciae. Representative strains of these clusters were able to produce cellulose and cellulases, which are two key molecules in the legume infection process. They formed biofilms and produced acyl-homoserine lactones (AHLs), which are involved in the quorum sensing regulation process. They also exhibited several plant growth promotion mechanisms, including phosphate solubilization, siderophore, and indole acetic acid production and symbiotic atmospheric nitrogen fixation. All strains showed high symbiotic efficiency on pea plants, indicating that strains of R. laguerreae sv. viciae are promising candidates for the biofertilization of this legume worldwide.

11.
Sci Total Environ ; 739: 139850, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32554115

RESUMO

Heavy metal pollution in the environment is an increasing problem due to natural and anthropogenic activities. The use of bacteria for bioremediation of soils contaminated with heavy metals has gained a lot of attention as it can be considered effective, economic and environmentally sustainable. In this work, we investigated the capacity of endophytic Micromonospora strains isolated from different legumes, to produce metallophores against a variety of heavy metals in vitro. Genome mining using available endophytic Micromonospora genome sequences revealed the presence of genes related to metal acquisition, iron metabolism and resistance to toxic compounds. In vitro production of metallophores demonstrated that all strains tested produced chelates against arsenic, cobalt, copper, chromium, iron, mercury, molybdenum, nickel, vanadium and zinc in different amounts. In addition, the plant growth promotion effect of strains GAR05 and PSN13 on Arabidopsis thaliana grown in the presence of several heavy metals was tested. Under these conditions, the plants inoculated with the strain GAR05 showed significant growth when compared to the control plants suggesting a plant growth promotion effect in the form of tolerance to the toxic substances. Furthermore, during this plant-bacterium interaction, a new bacterial structure named root-bead was observed on the roots of A. thaliana suggesting a strong interaction between the two organisms and a clear positive effect of the bacterium on the plant. Overall, these results highlight the potential use of endophytic Micromonospora strains for bacterial-assisted phytoremediation of contaminated sites.


Assuntos
Metais Pesados/análise , Micromonospora , Poluentes do Solo/análise , Bactérias , Biodegradação Ambiental , Raízes de Plantas/química
12.
Int J Syst Evol Microbiol ; 70(5): 3287-3294, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32375987

RESUMO

Strain RA15T was isolated from the rhizosphere of the halophyte plant Arthrocnemum macrostachyum growing in the Odiel marshes (Huelva, Spain). RA15T cells were Gram stain-negative, non-spore-forming, aerobic rods and formed cream-coloured, opaque, mucoid, viscous, convex, irregular colonies with an undulate margin. Optimal growth conditions were observed on tryptic soy agar (TSA) plates supplemented with 2.5 % NaCl (w/v) at pH 7.0 and 28 °C, although it was able to grow at 4-32 °C and at pH values of 5.0-9.0. The NaCl tolerance range was from 0 to 15 %. The major respiratory quinone was Q8 but Q9 was also present. The most abundant fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C17 : 1 ω8c and C16 : 0. The polar lipids profile comprised phosphatidylglycerol and phosphatidylethanolamine as the most abundant representatives. Phylogenetic analyses confirmed the well-supported affiliation of strain RA15T within the genus Pseudoalteromonas, close to the type strains of Pseudoalteromonas neustonica, Pseudoalteromonas prydzensis and Pseudoalteromonas mariniglutinosa. Results of comparative phylogenetic and phenotypic studies between strain RA15T and its closest related species suggest that RA15T could be a new representative of the genus Pseudoalteromonas, for which the name Pseudoalteromonas rhizosphaerae sp. nov. is proposed. The type strain is RA15T (=CECT 9079T=LMG 29860T). The whole genome has 5.3 Mb and the G+C content is 40.4 mol%.


Assuntos
Biodegradação Ambiental , Chenopodiaceae/microbiologia , Filogenia , Pseudoalteromonas/classificação , Rizosfera , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Pseudoalteromonas/isolamento & purificação , RNA Ribossômico 16S/genética , Plantas Tolerantes a Sal/microbiologia , Análise de Sequência de DNA , Espanha , Ubiquinona/química , Áreas Alagadas
13.
Int J Syst Evol Microbiol ; 70(1): 220-227, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31535966

RESUMO

Strain EAR18T was isolated as an endophyte from the roots of a halophyte plant, Arthrocnemum macrostachyum, growing in the Odiel marshes (Huelva, Spain). Cells of strain EAR18T were Gram- stain-negative, motile, non-spore-forming aerobic rods. It grew optimally on tryptic soy agar supplemented with 2.5 % NaCl (w/v), at pH 7 and 30 °C for 48 h. It tolerated NaCl from 0 to 25 % (w/v). It presented Q9 as the major quinone and C19 : 0 cyclo ω8c, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0 as the predominant fatty acids. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and four unidentified phospholipids. The results of phylogenetic analysis based on 16S rRNA gene sequences revealed that strain EAR18T formed a well-supported clade with species Halomonas zincidurans B6T and Halomonas xinjiangensis TRM 0175T (similarities of 98.3 and 96.1 % respectively). Furthermore, digital DNA-DNA hybridization analysis resulted in values of 20.4 % with H. xinjiangensis TRM 0175T and 35.50 % with H. zincidurans B6T, and ANIb/ANIm results in values of 73.8 %/84.2 % with H. xinjiangensis TRM 0175T and 86.8 %/89.4 % with H. zincidurans B6T. Based on phylogeny and differential phenotypic properties in comparison with its closest related species, strain EAR18T is suggested to represent a new species in the genus Halomonas, for which the name Halomonas radicis sp. nov. is proposed. The type strain is EAR18T (=CECT 9077T=LMG 29859T). The whole genome was sequenced, and it had a total length of 4.6 Mbp and a G+C content of 64.9 mol%.


Assuntos
Chenopodiaceae/microbiologia , Halomonas/classificação , Filogenia , Raízes de Plantas/microbiologia , Áreas Alagadas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/isolamento & purificação , Ácidos Graxos/química , Halomonas/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Plantas Tolerantes a Sal/microbiologia , Análise de Sequência de DNA , Espanha
14.
Antonie Van Leeuwenhoek ; 113(3): 397-405, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31630299

RESUMO

A novel actinobacterial strain, designated S2509T, was isolated from marine sediment collected by a dredge at a depth of 45 m along Melet River offshore of the southern Black Sea coast, Ordu, Turkey. The cell wall peptidoglycan of strain was found to contain meso-diaminopimelic acid and 3-OH-diaminopimelic acid. The whole cell sugars detected were arabinose, glucose, rhamnose, ribose and xylose. The diagnostic phospholipids of strain S2509T were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, a glycolipid and two unidentified phospholipids. The predominant menaquinones were identified as MK-9(H8), MK-9(H6), MK-10(H8), MK-9(H4), MK-10(H4) and MK-10(H6). The major cellular fatty acids were found to be iso-C16:0, iso-C15:0 and 10-methyl C17:0. The taxonomic position of the strain was established using a polyphasic approach, showing that S2509T strain belongs to the genus Micromonospora. Phylogenetic analysis based on the 16S rRNA gene sequence of strain S2509T showed that it is closely related to the type strain of Micromonospora chokoriensis DSM 45160T (99.37% sequence similarity), and phylogenetically clustered with Micromonospora inaquosa LB39T (99.37%), Micromonospora lupini Lupac 14NT (99.16%), Micromonospora violae NEAU-zh8T (99.23%) and Micromonospora taraxaci NEAU-P5T (99.03%). The phylogenetic analysis based on the gyrB gene sequence of strain S2509T confirmed its close relationship with M. chokoriensis JCM 13247T (96.5% sequence similarity). Whole genome sequences confirmed by digital DNA-DNA hybridization analysis that the strain S2509T represents a novel species in the genus Micromonospora, for which the name Micromonospora orduensis sp. nov. is proposed. The type strain is S2509T (=DSM 45926T = KCTC 29201T).


Assuntos
Organismos Aquáticos , Sedimentos Geológicos/microbiologia , Micromonospora/classificação , Micromonospora/isolamento & purificação , Técnicas de Tipagem Bacteriana , Ácidos Graxos/metabolismo , Genoma Bacteriano , Genômica/métodos , Micromonospora/genética , Filogenia , Água do Mar/microbiologia , Microbiologia do Solo
15.
Int J Syst Evol Microbiol ; 69(11): 3426-3436, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31395106

RESUMO

A Micromonospora strain, designated 5R2A7T, isolated from a high altitude Atacama Desert soil was examined by using a polyphasic approach. Strain 5R2A7T was found to have morphological, chemotaxonomic and cultural characteristics typical of members of the genus Micromonospora. The cell wall contains meso- and hydroxy-diaminopimelic acid, the major whole-cell sugars are glucose, ribose and xylose, the predominant menaquinones MK-10(H4), MK-10(H6), MK-10(H8) and MK-9(H6), the major polar lipids diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and an unknown glycolipid, and the predominant cellular fatty acids iso-C16 : 0, iso-C15 : 0 and 10-methyl C17 : 0. The digital genomic DNA G+C content is 72.3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain 5R2A7T was closely related to Micromonospora coriariae DSM 44875T (99.8 %) and Micromonospora cremea CR30T (99.7 %), and was separated readily from the latter, its closest phylogenetic neighbour, based on gyrB and multilocus sequence data, by low average nucleotide identity (92.59 %) and in silico DNA-DNA relatedness (51.7 %) values calculated from draft genome assemblies and by a range of chemotaxonomic and phenotypic properties. Consequently, strain 5R2A7T is considered to represent a novel species of Micromonospora for which the name Micromonospora acroterricola sp. nov. is proposed. The type strain is 5R2A7T (=LMG 30755T=CECT 9656T).


Assuntos
Altitude , Clima Desértico , Micromonospora/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , Chile , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Glicolipídeos/química , Micromonospora/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
16.
Front Microbiol ; 10: 1457, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333602

RESUMO

This study was designed to determine the plant growth promoting (PGP) potential of members of the genus Frankia. To this end, the genomes of 21 representative strains were examined for genes associated directly or indirectly with plant growth. All of the Frankia genomes contained genes that encoded for products associated with the biosynthesis of auxins [indole-3-glycerol phosphate synthases, anthranilate phosphoribosyltransferases (trpD), anthranilate synthases, and aminases (trpA and B)], cytokinins (11 well-conserved genes within the predicted biosynthetic gene cluster), siderophores, and nitrogenases (nif operon except for atypical Frankia) as well as genes that modulate the effects of biotic and abiotic environmental stress (e.g., alkyl hydroperoxide reductases, aquaporin Z, heat shock proteins). In contrast, other genes were associated with strains assigned to one or more of four host-specific clusters. The genes encoding for phosphate solubilization (e.g., low-affinity inorganic phosphate transporters) and lytic enzymes (e.g., cellulases) were found in Frankia cluster 1 genomes, while other genes were found only in cluster 3 genomes (e.g., alkaline phosphatases, extracellular endoglucanases, pectate lyases) or cluster 4 and subcluster 1c genomes (e.g., NAD(P) transhydrogenase genes). Genes encoding for chitinases were found only in the genomes of the type strains of Frankia casuarinae, F. inefficax, F. irregularis, and F. saprophytica. In short, these in silico genome analyses provide an insight into the PGP abilities of Frankia strains of known taxonomic provenance. This is the first study designed to establish the underlying genetic basis of cytokinin production in Frankia strains. Also, the discovery of additional genes in the biosynthetic gene cluster involved in cytokinin production opens up the prospect that Frankia may have novel molecular mechanisms for cytokinin biosynthesis.

17.
Microbiol Resour Announc ; 8(28)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296693

RESUMO

Three actinomycete strains, designated BL1, BL4, and CV4, were isolated from sediment samples from the Gulf of California in 2009 together with nearly 300 other actinobacteria. Genome mining and analysis of their ∼6.4-Mb sequences confirmed the bioprospecting potential of these three bacteria belonging to the genus Micromonospora.

18.
Sci Rep ; 9(1): 4678, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886188

RESUMO

The taxonomic status, biotechnological and ecological potential of several Micromonospora strains isolated from an extreme hyper arid Atacama Desert soil were determined. Initially, a polyphasic study was undertaken to clarify the taxonomic status of five micromonosporae, strains LB4, LB19, LB32T, LB39T and LB41, isolated from an extreme hyper-arid soil collected from one of the driest regions of the Atacama Desert. All of the isolates were found to have chemotaxonomic, cultural and morphological properties consistent with their classification in the genus Micromonospora. Isolates LB32T and LB39T were distinguished from their nearest phylogenetic neighbours and proposed as new species, namely as Micromonospora arida sp. nov. and Micromonospora inaquosa sp. nov., respectively. Eluted methanol extracts of all of the isolates showed activity against a panel of bacterial and fungal indicator strains, notably against multi-drug resistant Klebsiella pneumoniae ATCC 700603 while isolates LB4 and LB41 showed pronounced anti-tumour activity against HepG2 cells. Draft genomes generated for the isolates revealed a rich source of novel biosynthetic gene clusters, some of which were unique to individual strains thereby opening up the prospect of selecting especially gifted micromonosporae for natural product discovery. Key stress-related genes detected in the genomes of all of the isolates provided an insight into how micromonosporae adapt to the harsh environmental conditions that prevail in extreme hyper-arid Atacama Desert soils.


Assuntos
Anti-Infecciosos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Infecções por Klebsiella/terapia , Klebsiella pneumoniae/fisiologia , Neoplasias Hepáticas/terapia , Metanol/isolamento & purificação , Micromonospora/fisiologia , Anti-Infecciosos/uso terapêutico , Antineoplásicos/uso terapêutico , Extratos Celulares , Chile , Clima Desértico , Descoberta de Drogas , Células Hep G2 , Humanos , Filogenia , Microbiologia do Solo , Streptomyces/fisiologia , Estresse Fisiológico/genética
19.
Antonie Van Leeuwenhoek ; 112(6): 887-895, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30603802

RESUMO

A novel actinobacterial strain, designated GTF31T, was isolated from a coastal soil sample of Gölcük Lake, a crater lake in southwest Anatolia, Turkey. The taxonomic position of the strain was established using a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences and showed that the strain is closely related to Jiangella gansuensis DSM 44835T (99.4%), Jiangella alba DSM 45237T (99.3%) and Jiangella muralis DSM 45357T (99.2%). Optimal growth was observed at 28 °C and pH 7-8. Whole cell hydrolysates were found to contain LL-DAP, glucose, mannose, rhamnose and ribose. The predominant menaquinone was identified as MK-9(H4). The polar lipid profile was found to contain diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, glycophospholipids and unidentified phospholipids. The major fatty acids were identified as anteiso-C15:0, iso-C16:0 and anteiso-C17:0. The G + C content of the type strain was determined to be 72.5% and the size of the draft genome is 7.0 Mb. The calculated digital DDH values between strain GTF31T and the type strains of J. gansuensis, J. alba, J. muralis and Jiangella alkaliphila ranged from 24.4 to 34.4% and ANI values ranged between 81.0 and 87.9%. Based upon the consensus of phenotypic and phylogenetic analyses as well as whole genome comparisons, strain GTF31T (= DSM 100984T = CECT 9378T) is proposed to represent the type strain of a novel species, Jiangella anatolica sp. nov.


Assuntos
Actinobacteria/isolamento & purificação , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Ribossômico/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Turquia
20.
Syst Appl Microbiol ; 42(2): 190-197, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30528275

RESUMO

During a study looking for the isolation of new actinobacteria strains with potential for antibiotic production from deep marine sediment, three strains were collected with a morphology similar to the one described for the Micromonospora genus. A polyphasic study was designed to determine the taxonomic affiliation of the strains S2901T, S2903, and S2904. All the strains showed chemotaxonomic properties in line with their classification in the genus Micromonospora, meso-diaminopimelic acid in the wall peptidoglycan, a tetrahydrogenated menaquinone with nine isoprene units as major respiratory quinone, iso-C15:0 and iso-C16:0 as major fatty acids and diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol as major polar lipids. The 16S rRNA gene sequences of strain S2901T, S2903, and S2904 showed the highest similarity (99.2%) with the type strain of Micromonospora halophytica DSM 43171T, forming an independent branch in the phylogenetic gene tree. Their independent position was confirmed with gyrB gene and MLSA phylogenies. Whole genome sequences confirmed by digital DNA-DNA hybridization analysis that the isolates should be assigned to a new species within the genus Micromonospora for which the name Micromonospora globispora sp. nov. (S2901T, S2903 and S2904) is proposed.


Assuntos
Sedimentos Geológicos/microbiologia , Micromonospora/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Mar Negro , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Genes Bacterianos , Micromonospora/isolamento & purificação , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Turquia , Vitamina K 2/análogos & derivados , Vitamina K 2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...