Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 20(11): 115204, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-21694221

RESUMO

The structure and thermal properties of yttrium alumino-phosphate glasses, of nominal composition (Y(2)O(3))(0.31-z)(Al(2)O(3))(z)(P(2)O(5))(0.69) with [Formula: see text], were studied by using a combination of neutron diffraction, (27)Al and (31)P magic angle spinning nuclear magnetic resonance, differential scanning calorimetry and thermal gravimetric analysis methods. The Vickers hardness of the glasses was also measured. The data are compared to those obtained for pseudo-binary Al(2)O(3)-P(2)O(5) glasses and the structure of all these materials is rationalized in terms of a generic model for vitreous phosphate materials in which Y(3+) and Al(3+) act as modifying cations that bind only to the terminal (non-bridging) oxygen atoms of PO(4) tetrahedra. The results are used to help elucidate the phenomenon of rare-earth clustering in phosphate glasses which can be reduced by substituting Al(3+) ions for rare-earth R(3+) ions at fixed modifier content.

2.
Antimicrob Agents Chemother ; 51(12): 4453-61, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17908949

RESUMO

Staphylococcus aureus can cause a range of diseases, such as osteomyelitis, as well as colonize implanted medical devices. In most instances the organism forms biofilms that not only are resistant to the body's defense mechanisms but also display decreased susceptibilities to antibiotics. In the present study, we have examined the effect of increasing silver contents in phosphate-based glasses to prevent the formation of S. aureus biofilms. Silver was found to be an effective bactericidal agent against S. aureus biofilms, and the rate of silver ion release (0.42 to 1.22 microg x mm(-2) x h(-1)) from phosphate-based glass was found to account for the variation in its bactericidal effect. Analysis of biofilms by confocal microscopy indicated that they consisted of an upper layer of viable bacteria together with a layer ( approximately 20 microm) of nonviable cells on the glass surface. Our results showed that regardless of the silver contents in these glasses (10, 15, or 20 mol%) the silver exists in its +1 oxidation state, which is known to be a highly effective bactericidal agent compared to that of silver in other oxidation states (+2 or +3). Analysis of the glasses by (31)P nuclear magnetic resonance imaging and high-energy X-ray diffraction showed that it is the structural rearrangement of the phosphate network that is responsible for the variation in silver ion release and the associated bactericidal effectiveness. Thus, an understanding of the glass structure is important in interpreting the in vitro data and also has important clinical implications for the potential use of the phosphate-based glasses in orthopedic applications to deliver silver ions to combat S. aureus biofilm infections.


Assuntos
Biofilmes/efeitos dos fármacos , Vidro/química , Fosfatos/farmacologia , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância Magnética , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Fosfatos/química , Prata/química , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/ultraestrutura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA