Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 123(35): 7619-7636, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31386367

RESUMO

We demonstrate that the possibility of monitoring relative photoionization cross sections over a large photon energy range allows us to study and disentangle shake processes and intramolecular inelastic scattering effects. In this gas-phase study, relative intensities of the carbon 1s photoelectron lines from chemically inequivalent carbon atoms in the same molecule have been measured as a function of the incident photon energy in the range of 300-6000 eV. We present relative cross sections for the chemically shifted carbon 1s lines in the photoelectron spectra of ethyl trifluoroacetate (the "ESCA" molecule). The results are compared with those of methyl trifluoroacetate and S-ethyl trifluorothioacetate as well as a series of chloro-substituted ethanes and 2-butyne. In the soft X-ray energy range, the cross sections show an extended X-ray absorption fine structure type of wiggles, as was previously observed for a series of chloroethanes. The oscillations are damped in the hard X-ray energy range, but deviations of cross-section ratios from stoichiometry persist, even at high energies. The current findings are supported by theoretical calculations based on a multiple scattering model. The use of soft and tender X-rays provides a more complete picture of the dominant processes accompanying photoionization. Such processes reduce the main photoelectron line intensities by 20-60%. Using both energy ranges enabled us to discern the process of intramolecular inelastic scattering of the outgoing electron, whose significance is otherwise difficult to assess for isolated molecules. This effect relates to the notion of the inelastic mean free path commonly used in photoemission studies of clusters and condensed matter.

2.
J Chem Phys ; 138(23): 234310, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23802963

RESUMO

Carbon 1s photoelectron spectra for 2-butyne (CH3C≡CCH3) measured in the photon energy range from threshold to 150 eV above threshold show oscillations in the intensity ratio C2,3/C1,4. Similar oscillations have been seen in chloroethanes, where the effect has been attributed to EXAFS-type scattering from the substituent chlorine atoms. In 2-butyne, however, there is no high-Z atom to provide a scattering center and, hence, oscillations of the magnitude observed are surprising. The results have been analyzed in terms of two different theoretical models: a density-functional model with B-spline atom-centered functions to represent the continuum electrons and a multiple-scattering model using muffin-tin potentials to represent the scattering centers. Both methods give a reasonable description of the energy dependence of the intensity ratios.


Assuntos
Carbono/química , Elétrons , Íons/química , Espectroscopia Fotoeletrônica , Fótons , Espalhamento de Radiação
3.
J Phys Chem A ; 113(15): 3481-90, 2009 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-19317438

RESUMO

Carbon 1s ionization energies have been measured for all of the carbon atoms in eight fluoromethylbenzenes. Enthalpies of protonation have been calculated for protonation at all of the ring carbons in the same molecules. These data together with previously reported data on fluorobenzenes and methylbenzenes provide the basis for studying the additivity of substituent effects and the correlation between enthalpies of protonation with core-ionization energies. Although a linear additivity model accounts reasonably well for both the ionization energies and the enthalpies of protonation, a better description, especially for the enthalpies, is obtained by inclusion of nonlinear terms that account for interactions between two substituents on the same molecule. There are families of nearly parallel correlation lines between enthalpies of protonation and core-ionization energies. The existence of several families can be primarily understood in terms of the linear additivity picture and more completely understood when the nonlinear terms are taken into account. The role of the methyl group as a polarizible pi-electron donor is contrasted with the role of fluorine, which is a substituent of low polarizibility that acts to withdraw electrons from the adjacent carbon and to donate electrons through resonance to the ring. The role of the hydrogen atoms as pi-electron acceptors in the protonated species is illustrated.

4.
J Org Chem ; 71(5): 1961-8, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16496981

RESUMO

The carbon 1s ionization energies for all of the carbon atoms in 10 fluorine-substituted benzene molecules have been measured by high-resolution photoelectron spectroscopy. A total of 30 ionization energies can be accurately described by an additivity model with four parameters that describe the effect of a fluorine that is ipso, ortho, meta, or para to the site of ionization. A similar additivity relationship describes the enthalpies of protonation. The additivity parameters reflect the role of fluorine as an electron-withdrawing group and as a pi-electron donating group. The ionization energies and proton affinities correlate linearly, but there are four different correlations depending on whether there are 0, 1, 2, or 3 fluorines ortho or para to the site of ionization or protonation. That there are four correlation lines can be understood in terms of the ability of the hydrogens at the site of protonation to act as a pi-electron acceptor. A comparison of the ionization energies and proton affinities, together with the results of electronic structure calculations, gives insight into the effects of fluorine as an electron-withdrawing group and as a pi donor, both in the neutral molecule and in response to an added positive charge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...