Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4517, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402255

RESUMO

PURPOSE Cathepsin B (Cat B) is a cysteine lysosomal protease that is upregulated in many inflammatory diseases and widely expressed in the brain. Here, we used a Cat B activatable near-infrared (NIR) imaging probe to measure glial activation in vivo in the formalin test, a standard orofacial inflammatory pain model. The probe's efficacy was quantified with immunohistochemical analysis of the somatosensory cortex. PROCEDURES Three different concentrations of Cat B imaging probe (30, 50, 100 pmol/200 g bodyweight) were injected intracisternally into the foramen magnum of rats under anesthesia. Four hours later formalin (1.5%, 50 µl) was injected into the upper lip and the animal's behaviors recorded for 45 min. Subsequently, animals were repeatedly scanned using the IVIS Spectrum (8, 10, and 28 h post imaging probe injection) to measure extracellular Cat B activity. Aldehyde fixed brain sections were immunostained with antibodies against microglial marker Iba1 or astrocytic GFAP and detected with fluorescently labeled secondary antibodies to quantify co-localization with the fluorescent probe. RESULTS The Cat B imaging probe only slightly altered the formalin test results. Nocifensive behavior was only reduced in phase 1 in the 100 pmol group. In vivo measured fluorescence efficiency was highest in the 100 pmol group 28 h post imaging probe injection. Post-mortem immunohistochemical analysis of the somatosensory cortex detected the greatest amount of NIR fluorescence localized on microglia and astrocytes in the 100 pmol imaging probe group. Sensory neuron neuropeptide and cell injury marker expression in ipsilateral trigeminal ganglia was not altered by the presence of fluorescent probe. CONCLUSIONS These data demonstrate a concentration- and time-dependent visualization of extracellular Cat B in activated glia in the formalin test using a NIR imaging probe. Intracisternal injections are well suited for extracellular CNS proteinase detection in conditions when the blood-brain barrier is intact.


Assuntos
Catepsina B , Corantes Fluorescentes , Ratos , Animais , Catepsina B/metabolismo , Medição da Dor , Corantes Fluorescentes/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Microglia/metabolismo , Dor Facial/metabolismo , Formaldeído/metabolismo
2.
Microorganisms ; 11(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37512944

RESUMO

Desulfovibrio (DSV) are sulfate-reducing bacteria (SRB) that are ubiquitously present in the environment and as resident commensal bacteria within the human gastrointestinal tract. Though they are minor residents of the healthy gut, DSV are opportunistic pathobionts that may overgrow in the setting of various intestinal and extra-intestinal diseases. An increasing number of studies have demonstrated a positive correlation between DSV overgrowth (bloom) and various human diseases. While the relationship between DSV bloom and disease pathology has not been clearly established, mounting evidence suggests a causal role for these bacteria in disease development. As DSV are the most predominant genera of SRB in the gut, this review summarizes current knowledge regarding the relationship between DSV and a variety of diseases. In this study, we also discuss the mechanisms by which these bacteria may contribute to disease pathology.

3.
Microorganisms ; 11(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838472

RESUMO

The ability of bacteriophage (phage), abundant within the gastrointestinal microbiome, to regulate bacterial populations within the same micro-environment offers prophylactic and therapeutic opportunities. Bacteria and phage have both been shown to interact intimately with mucin, and these interactions invariably effect the outcomes of phage predation within the intestine. To better understand the influence of the gastrointestinal micro-environment on phage predation, we employed enclosed, in vitro systems to investigate the roles of mucin concentration and agitation as a function of phage type and number on bacterial killing. Using two lytic coliphage, T4 and PhiX174, bacterial viability was quantified following exposure to phages at different multiplicities of infection (MOI) within increasing, physiological levels of mucin (0-4%) with and without agitation. Comparison of bacterial viability outcomes demonstrated that at low MOI, agitation in combination with higher mucin concentration (>2%) inhibited phage predation by both phages. However, when MOI was increased, PhiX predation was recovered regardless of mucin concentration or agitation. In contrast, only constant agitation of samples containing a high MOI of T4 demonstrated phage predation; briefly agitated samples remained hindered. Our results demonstrate that each phage-bacteria pairing is uniquely influenced by environmental factors, and these should be considered when determining the potential efficacy of phage predation under homeostatic or therapeutic circumstances.

4.
Front Cell Infect Microbiol ; 12: 882498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694541

RESUMO

Tight junctions (TJs) are essential components of intestinal barrier integrity and protect the epithelium against passive paracellular flux and microbial translocation. Dysfunctional TJ leads to leaky gut, a condition associated with diseases including inflammatory bowel disease (IBD). Sulfate-Reducing Bacteria (SRB) are minor residents of the gut. An increased number of Desulfovibrio, the most predominant SRB, is observed in IBD and other diseases associated with leaky gut. However, it is not known whether Desulfovibrio contributes to leaky gut. We tested the hypothesis that Desulfovibrio vulgaris (DSV) may induce intestinal permeability in vitro. Snail, a transcription factor, disrupts barrier function by affecting TJ proteins such as occludin. Intestinal alkaline phosphatase (IAP), a host defense protein, protects epithelial barrier integrity. We tested whether DSV induced permeability in polarized Caco-2 cells via snail and if this effect was inhibited by IAP. Barrier integrity was assessed by measuring transepithelial electric resistance (TEER) and by 4kDa FITC-Dextran flux to determine paracellular permeability. We found that DSV reduced TEER, increased FITC-flux, upregulated snail protein expression, caused nuclear translocation of snail, and disrupted occludin staining at the junctions. DSV-induced permeability effects were inhibited in cells knocked down for snail. Pre-treatment of cells with IAP inhibited DSV-induced FITC flux and snail expression and DSV-mediated disruption of occludin staining. These data show that DSV, a resident commensal bacterium, can contribute to leaky gut and that snail may serve as a novel therapeutic target to mitigate DSV-induced effects. Taken together, our study suggests a novel underlying mechanism of association of Desulfovibrio bloom with diseases with increased intestinal permeability. Our study also underscores IAP as a novel therapeutic intervention for correcting SRB-induced leaky gut via inhibition of snail.


Assuntos
Fosfatase Alcalina/metabolismo , Desulfovibrio , Doenças Inflamatórias Intestinais , Bactérias/metabolismo , Células CACO-2 , Fluoresceína-5-Isotiocianato/metabolismo , Fluoresceína-5-Isotiocianato/farmacologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Ocludina/metabolismo , Permeabilidade , Sulfatos/metabolismo , Junções Íntimas/metabolismo
5.
Front Cell Infect Microbiol ; 11: 695299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336718

RESUMO

Sulfate Reducing Bacteria (SRB), usually rare residents of the gut, are often found in increased numbers (called a SRB bloom) in inflammatory conditions such as Inflammatory Bowel Disease (IBD), pouchitis, and periodontitis. However, the underlying mechanisms of this association remain largely unknown. Notch signaling, a conserved cell-cell communication pathway, is usually involved in tissue development and differentiation. Dysregulated Notch signaling is observed in inflammatory conditions such as IBD. Lipolysaccharide and pathogens also activate Notch pathway in macrophages. In this study, we tested whether Desulfovibrio, the most dominant SRB genus in the gut, may activate Notch signaling. RAW 264.7 macrophages were infected with Desulfovibrio vulgaris (DSV) and analyzed for the expression of Notch signaling pathway-related proteins. We found that DSV induced protein expression of Notch1 receptor, Notch intracellular domain (NICD) and p21, a downstream Notch target, in a dose-and time-dependent manner. DSV also induced the expression of pro-IL1ß, a precursor of IL-1ß, and SOCS3, a regulator of cytokine signaling. The gamma secretase inhibitor DAPT or Notch siRNA dampened DSV-induced Notch-related protein expression as well the expression of pro-IL1ß and SOCS3. Induction of Notch-related proteins by DSV was not affected by TLR4 -IN -C34(C34), a TLR4 receptor antagonist. Additionally, cell-free supernatant of DSV-infected macrophages induced NICD expression in uninfected macrophages. DSV also activated Notch pathway in the human epithelial cell line HCT116 and in mouse small intestine. Thus, our study uncovers a novel mechanism by which SRB interact with host cells by activating Notch signaling pathway. Our study lays a framework for examining whether the Notch pathway induced by SRB contributes to inflammation in conditions associated with SRB bloom and whether it can be targeted as a therapeutic approach to treat these conditions.


Assuntos
Desulfovibrio , Receptor Notch1 , Transdução de Sinais , Animais , Bactérias , Camundongos , Células RAW 264.7 , Sulfatos
6.
Viruses ; 13(2)2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672780

RESUMO

For decades, bacteriophage purification has followed structured protocols focused on generating high concentrations of phage in manageable volumes. As research moves toward understanding complex phage populations, purification needs have shifted to maximize the amount of phage while maintaining diversity and activity. The effects of standard phage purification procedures such as polyethylene glycol (PEG) precipitation and cesium chloride (CsCl) density gradients on both diversity and activity of a phage population are not known. We have examined the effects of PEG precipitation and CsCl density gradients on a number of known phage (M13, T4, and ΦX 174) of varying structure and size, individually and as mixed sample. Measurement of phage numbers and activity throughout the purification process was performed. We demonstrate that these methods, used routinely to generate "pure" phage samples, are in fact detrimental to retention of phage number and activity; even more so in mixed phage samples. As such, minimal amounts of processing are recommended to introduce less bias and maintain more of a phage population.


Assuntos
Bacteriófagos/fisiologia , Ultracentrifugação/métodos , Bacteriófagos/química , Bacteriófagos/isolamento & purificação , Césio/química , Cloretos/química
7.
Microorganisms ; 9(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670927

RESUMO

Conventional phage therapy using bacteriophages (phages) for specific targeting of pathogenic bacteria is not always useful as a therapeutic for gastrointestinal (GI) dysfunction. Complex dysbiotic GI disorders such as small intestinal bowel overgrowth (SIBO), ulcerative colitis (UC), or Crohn's disease (CD) are even more difficult to treat as these conditions have shifts in multiple populations of bacteria within the microbiome. Such community-level structural changes in the gut microbiota may require an alternative to conventional phage therapy such as fecal virome transfer or a phage cocktail capable of targeting multiple bacterial species. Additionally, manipulation of the GI microenvironment may enhance beneficial bacteria-phage interactions during treatment. Mucin, produced along the entire length of the GI tract to protect the underlying mucosa, is a prominent contributor to the GI microenvironment and may facilitate bacteria-phage interactions in multiple ways, potentially serving as an adjunct during phage therapy. In this review, we will describe what is known about the role of mucin within the GI tract and how its facilitation of bacteria-phage interactions should be considered in any effort directed at optimizing effectiveness of a phage therapy for gastrointestinal dysbiosis.

8.
Sci Rep ; 10(1): 3107, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080230

RESUMO

Intestinal alkaline phosphatase (IAP) regulates bicarbonate secretion, detoxifies lipopolysaccharide (LPS), regulates gut microbes, and dephosphorylates proinflammatory nucleotides. IAP also exhibits anti-inflammatory effects in a Toll-like Receptor-4 (TLR-4) dependent manner. However, it is not known whether IAP induces autophagy. We tested the hypothesis that IAP may induce autophagy which may mediate the anti-inflammatory effects of IAP. We found that exogenous IAP induced autophagy in intestinal epithelial cells and in macrophages. TLR4INC34 (C34), a TLR4 signaling inhibitor, suppressed IAP-induced autophagy. IAP also inhibited LPS-induced IL-1ß mRNA expression and activation of NF-κB. When autophagy was blocked by 3-methyladenine (3MA) or by Atg5 siRNA, IAP failed to block LPS-mediated effects. IAP also upregulated autophagy-related gene expression in small intestine in mice. We administered either vehicle or IAP (100 U/ml) in drinking water for 14 days in C57BL/6 mice. Mice were sacrificed and ileal tissues collected. Increased expression of Atg5, Atg16, Irgm1, Tlr4, and Lyz genes was observed in the IAP treated group compared to the vehicle treated group. Increase in Atg16 protein expression and fluorescence intensity of LC3 was also observed in IAP-treated tissues compared to the vehicle-treated tissues. Thus, our study lays the framework for investigating how IAP and autophagy may act together to control inflammatory conditions.


Assuntos
Fosfatase Alcalina/metabolismo , Autofagia , Inflamação/metabolismo , Intestinos/enzimologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Proteína 5 Relacionada à Autofagia/metabolismo , Bovinos , Linhagem Celular Tumoral , Feminino , Células HCT116 , Humanos , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Células RAW 264.7 , RNA Interferente Pequeno/metabolismo , Receptor 4 Toll-Like/metabolismo
9.
Microorganisms ; 7(12)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795262

RESUMO

Bacteriophage and the bacteria they infect are the dominant members of the gastrointestinal microbiome. While bacteria are known to be central to maintenance of the structure, function, and health of the microbiome, it has only recently been recognized that phage too might serve a critical function. Along these lines, bacteria are not the only cells that are influenced by bacteriophage, and there is growing evidence of bacteriophage effects on epithelial, endothelial, and immune cells. The innate immune system is essential to protecting the Eukaryotic host from invading microorganisms, and bacteriophage have been demonstrated to interact with innate immune cells regularly. Here, we conduct a systematic review of the varying mechanisms allowing bacteriophage to access and interact with cells of the innate immune system and propose the potential importance of these interactions.

10.
Artigo em Inglês | MEDLINE | ID: mdl-31750259

RESUMO

Fecal microbiota transplantation (FMT) is an effective tool for treating Clostridium difficile infection in the setting of dysbiosis of the intestinal microbiome. FMT for other forms of human disorders linked to dysbiosis have been less effective. The fecal microbiota contains a high density of virus-like particles (VLP), up to 90% of which are bacteriophages, thought to have a role in regulating gut bacterial populations. We hypothesized that transplantation of the phage-containing fecal VLP fraction may reduce bacterial density in the dysbiotic setting of small intestinal bacterial overgrowth (SIBO). In an experiment using fecal transplantation, we compared the effect of the fecal VLP fraction (bacteria removed) against "Whole" FMT (bacteria intact) on the ileal microbiome. Recipients were either treated with a 30-day high-fat diet (HFD) as a model of dysbiosis to induce SIBO or were on a standard diet (SD). We observed that transplantation of fecal VLPs from donors on a HFD was sufficient to alter the ileal microbiota, but the effect was dependent on diet of the recipient. In recipients on a HFD, ileal bacterial density was reduced. In recipients on a SD, the ileal microbiome transitioned toward the composition associated with a HFD. In both recipient groups, transplantation of fecal VLP fraction alone produced the same outcome as whole FMT. Neither treatment altered expression of antimicrobial peptides. These findings demonstrated a potential role of VLPs, likely phages, for modifying the gut microbiome during dysbiosis.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Disbiose/terapia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Intestino Delgado/microbiologia , Animais , Carga Bacteriana , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Clostridioides difficile , Modelos Animais de Doenças , Enterocolite Pseudomembranosa/microbiologia , Enterocolite Pseudomembranosa/terapia , Transplante de Microbiota Fecal/métodos , Metagenômica/métodos , Camundongos , RNA Ribossômico 16S , Resultado do Tratamento
11.
Biotechnol Biofuels ; 12: 175, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31303895

RESUMO

BACKGROUND: Valorization of lignin has the potential to significantly improve the economics of lignocellulosic biorefineries. However, its complex structure makes conversion to useful products elusive. One promising approach is depolymerization of lignin and subsequent bioconversion of breakdown products into value-added compounds. Optimizing transport of these depolymerization products into one or more organism(s) for biological conversion is important to maximize carbon utilization and minimize toxicity. Current methods assess internalization of depolymerization products indirectly-for example, growth on, or toxicity of, a substrate. Furthermore, no method has been shown to provide visualization of depolymerization products in individual cells. RESULTS: We applied mass spectrometry to provide direct measurements of relative internalized concentrations of several lignin depolymerization compounds and single-cell microscopy methods to visualize cell-to-cell differences in internalized amounts of two lignin depolymerization compounds. We characterized internalization of 4-hydroxybenzoic acid, vanillic acid, p-coumaric acid, syringic acid, and the model dimer guaiacylglycerol-beta-guaiacyl ether (GGE) in the lignolytic organisms Phanerochaete chrysosporium and Enterobacter lignolyticus and in the non-lignolytic but genetically tractable organisms Saccharomyces cerevisiae and Escherichia coli. The results show varying degrees of internalization in all organisms for all the tested compounds, including the model dimer, GGE. Phanerochaete chrysosporium internalizes all compounds in non-lignolytic and lignolytic conditions at comparable levels, indicating that the transporters for these compounds are not specific to the lignolytic secondary metabolic system. Single-cell microscopy shows that internalization of vanillic acid and 4-hydroxybenzoic acid analogs varies greatly among individual fungal and bacterial cells in a given population. Glucose starvation and chemical inhibition of ATP hydrolysis during internalization significantly reduced the internalized amount of vanillic acid in bacteria. CONCLUSIONS: Mass spectrometry and single-cell microscopy methods were developed to establish a toolset for providing direct measurement and visualization of relative internal concentrations of mono- and di-aryl compounds in microbes. Utilizing these methods, we observed broad variation in intracellular concentration between organisms and within populations and this may have important consequences for the efficiency and productivity of an industrial process for bioconversion. Subsequent application of this toolset will be useful in identifying and characterizing specific transporters for lignin-derived mono- and di-aryl compounds.

12.
Neuroimage ; 200: 121-131, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31201984

RESUMO

Recent studies have shown a critical role of the gastrointestinal microbiome in brain and behavior via the complex gut-microbiome-brain axis. However, the influence of the oral microbiome in neurological processes is much less studied, especially in response to the stimuli, such as smoking, within the oral microenvironment. Additionally, given the complex structural and functional networks in brain, our knowledge about the relationship between microbiome and brain function through specific brain circuits is still very limited. In this pilot study, we leveraged next generation sequencing for microbiome and functional neuroimaging technique to enable the delineation of microbiome-brain network links as well as their relationship to cigarette smoking. Thirty smokers and 30 age- and sex-matched nonsmokers were recruited for 16S sequencing of their oral microbial community. Among them, 56 subjects were scanned by resting-state functional magnetic resonance imaging to derive brain functional networks. Statistical analyses were performed to demonstrate the influence of smoking on the oral microbial composition, functional network connectivity, and the associations between microbial shifts and functional network connectivity alternations. Compared to nonsmokers, we found a significant decrease of beta diversity (P = 6 × 10-3) in smokers and identified several classes (Betaproteobacteria, Spirochaetia, Synergistia, and Mollicutes) with significant alterations in microbial abundance. Pathway analysis on the predicted KEGG pathways shows that the microbiota with altered abundance are mainly involved in pathways related to cell processes, DNA repair, immune system, and neurotransmitters signaling. One brain functional network connectivity component was identified to have a significant difference between smokers and nonsmokers (P = 0.032), mainly including connectivity between brain default network and other task-positive networks. This brain functional component was also significantly associated with smoking related microbiota, suggesting a correlated cross-individual pattern between smoking-induced oral microbiome dysbiosis and brain functional connectivity alternation, possibly involving immunological and neurotransmitter signaling pathways. This work is the first attempt to link oral microbiome and brain functional networks, and provides support for future work in characterizing the role of oral microbiome in mediating smoking effects on brain activity.


Assuntos
Córtex Cerebral/fisiopatologia , Conectoma , Disbiose/microbiologia , Microbiota/fisiologia , Boca/microbiologia , Rede Nervosa/fisiopatologia , Transdução de Sinais/fisiologia , Fumar/fisiopatologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/imunologia , Disbiose/etiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/imunologia , Projetos Piloto , Saliva/microbiologia , Transdução de Sinais/imunologia , Fumar/efeitos adversos , Adulto Jovem
13.
Methods Mol Biol ; 1346: 185-207, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26542723

RESUMO

Total internal reflection fluorescence (TIRF) microscopy is a powerful technique for interrogating protein dynamics in the membranes of living single cells. Receptor-ligand interactions are of particular interest for improving our understanding of cell signaling networks in a variety of applications. Here, we describe methods for fluorescently labeling individual receptors and their ligands, conducting single-molecule TIRF microscopy of receptors and ligands in single, living cells, and importantly, performing image analysis on the resulting time sequence of images to extract quantitative dynamics. While we use Toll-like receptor 4 and its ligand lipopolysaccharide as a specific example, the methods are general and readily extendable to other receptor-ligand systems of importance in cellular biology.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/análise , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Análise de Célula Única/métodos , Animais , Anticorpos Monoclonais/química , Linhagem Celular , Membrana Celular/química , Corantes Fluorescentes/química , Humanos , Imunoconjugados/química , Macrófagos/citologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Software , Receptor 4 Toll-Like/análise , Receptor 4 Toll-Like/metabolismo
14.
J Cell Biol ; 210(5): 851-64, 2015 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-26304724

RESUMO

Mast cells (MCs) produce soluble mediators such as histamine and prostaglandins that are known to influence dendritic cell (DC) function by stimulating maturation and antigen processing. Whether direct cell-cell interactions are important in modulating MC/DC function is unclear. In this paper, we show that direct contact between MCs and DCs occurs and plays an important role in modulating the immune response. Activation of MCs through FcεRI cross-linking triggers the formation of stable cell-cell interactions with immature DCs that are reminiscent of the immunological synapse. Direct cellular contact differentially regulates the secreted cytokine profile, indicating that MC modulation of DC populations is influenced by the nature of their interaction. Synapse formation requires integrin engagement and facilitates the transfer of internalized MC-specific antigen from MCs to DCs. The transferred material is ultimately processed and presented by DCs and can activate T cells. The physiological outcomes of the MC-DC synapse suggest a new role for intercellular crosstalk in defining the immune response.


Assuntos
Apresentação de Antígeno/imunologia , Células Dendríticas/imunologia , Sinapses Imunológicas/imunologia , Ativação Linfocitária/imunologia , Mastócitos/imunologia , Linfócitos T/imunologia , Animais , Antígenos/imunologia , Antígenos/metabolismo , Comunicação Celular/imunologia , Linhagem Celular , Citocinas/biossíntese , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ovalbumina/imunologia , Receptores de IgE/imunologia
15.
Langmuir ; 29(9): 2992-9, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23391254

RESUMO

Synthetic interconnected lipid nanotube networks were fabricated on the millimeter scale based on the simple, cooperative interaction between phospholipid vesicles and kinesin-microtubule (MT) transport systems. More specifically, taxol-stabilized MTs, in constant 2D motion via surface absorbed kinesin, extracted and extended lipid nanotube networks from large Lα phase multilamellar liposomes (5-25 µm). Based on the properties of the inverted motility geometry, the total size of these nanofluidic networks was limited by MT surface density, molecular motor energy source (ATP), and total amount and physical properties of lipid source material. Interactions between MTs and extended lipid nanotubes resulted in bifurcation of the nanotubes and ultimately the generation of highly branched networks of fluidically connected nanotubes. The network bifurcation was easily tuned by changing the density of microtubules on the surface to increase or decrease the frequency of branching. The ability of these networks to capture nanomaterials at the membrane surface with high fidelity was subsequently demonstrated using quantum dots as a model system. The diffusive transport of quantum dots was also characterized with respect to using these nanotube networks for mass transport applications.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Movimento , Nanotecnologia/métodos , Nanotubos/química , Fosfolipídeos/química , Adesividade , Cinesinas/química , Fenômenos Mecânicos , Modelos Moleculares , Fosfolipídeos/metabolismo , Conformação Proteica , Propriedades de Superfície
16.
Front Immunol ; 3: 46, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22566928

RESUMO

In addition to their central role in allergy, mast cells are involved in a wide variety of cellular interactions during homeostasis and disease. In this review, we discuss the ability of mast cells to extend their mechanisms for intercellular communication beyond the release of soluble mediators. These include formation of mast cell synapses on antigen presenting surfaces, as well as cell-cell contacts with dendritic cells and T cells. Release of membrane bound exosomes also provide for the transfer of antigen, mast cell proteins, and RNA to other leukocytes. With the recognition of the extended role mast cells have during immune modulation, further investigation of the processes in which mast cells are involved is necessary. This reopens mast cell research to exciting possibilities, demonstrating it to be an immunological frontier.

17.
Biophys J ; 99(2): 388-97, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20643056

RESUMO

There is considerable interest in the signaling mechanisms of immunoreceptors, especially when triggered with membrane-bound ligands. We have quantified the spatiotemporal dynamics of the redistribution of immunoglobulin E-loaded receptors (IgE-FcepsilonRI) on rat basophilic leukemia-2H3 mast cells in contact with fluid and gel-phase membranes displaying ligands for immunoglobulin E, using total internal reflection fluorescence microscopy. To clearly separate the kinetics of receptor redistribution from cell spreading, and to precisely define the initial contact time (+/-50 ms), micropipette cell manipulation was used to bring individual cells into contact with surfaces. On ligand-free surfaces, there are micron-scale heterogeneities in fluorescence that likely reflect regions of the cell that are more closely apposed to the substrate. When ligands are present, receptor clusters form with this same size scale. The initial rate of accumulation of receptors into the clusters is consistent with diffusion-limited trapping with D approximately 10(-1) microm2/s. These results support the hypothesis that clusters form by diffusion to cell-surface contact regions. Over longer timescales (>10 s), individual clusters moved with both diffusive and directed motion components. The dynamics of the cluster motion is similar to the dynamics of membrane fluctuations of cells on ligand-free fluid membranes. Thus, the same cellular machinery may be responsible for both processes.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/metabolismo , Membrana Celular/metabolismo , Leucemia Basofílica Aguda/metabolismo , Leucemia Basofílica Aguda/patologia , Fosfatidilcolinas/metabolismo , Receptores de IgE/metabolismo , Animais , Linhagem Celular Tumoral , Fluorescência , Ligantes , Ratos , Fatores de Tempo
18.
J Immunol ; 184(3): 1328-38, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20042583

RESUMO

Fc epsilonRI on mast cells form a synapse when presented with mobile, bilayer-incorporated Ag. In this study, we show that receptor reorganization within the contacting mast cell membrane is markedly different upon binding of mobile and immobilized ligands. Rat basophilic leukemia mast cells primed with fluorescent anti-DNP IgE were engaged by surfaces presenting either bilayer-incorporated, monovalent DNP-lipid (mobile ligand), or chemically cross-linked, multivalent DNP (immobilized ligand). Total internal reflection fluorescence imaging and electron microscopy methods were used to visualize receptor reorganization at the contact site. The spatial relationships of Fc epsilonRI to other cellular components at the synapse, such as actin, cholesterol, and linker for activation of T cells, were also analyzed. Stimulation of mast cells with immobilized polyvalent ligand resulted in typical levels of degranulation. Remarkably, degranulation also followed interaction of mast cells, with bilayers presenting mobile, monovalent ligand. Receptors engaged with mobile ligand coalesce into large, cholesterol-rich clusters that occupy the central portion of the contacting membrane. These data indicate that Fc epsilonRI cross-linking is not an obligatory step in triggering mast cell signaling and suggest that dense populations of mobile receptors are capable of initiating low-level degranulation upon ligand recognition.


Assuntos
Comunicação Celular/imunologia , Membrana Celular/imunologia , Membrana Celular/metabolismo , Sinapses Imunológicas/metabolismo , Mastócitos/imunologia , Receptores de IgE/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/ultraestrutura , Colesterol/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Imunoglobulina E/metabolismo , Sinapses Imunológicas/ultraestrutura , Ligantes , Bicamadas Lipídicas/química , Bicamadas Lipídicas/imunologia , Bicamadas Lipídicas/metabolismo , Mastócitos/metabolismo , Mastócitos/ultraestrutura , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica/imunologia , Ratos , Receptores de IgE/química , Receptores de IgE/ultraestrutura , Propriedades de Superfície
19.
Biotechnol Bioeng ; 104(6): 1182-8, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19685523

RESUMO

Biomolecular motors, such as kinesin, have been used to shuttle a range of biological and synthetic cargo in microfluidic architectures. A critical gap in this technology is the ability to controllably link macromolecular cargo on microtubule (MT) shuttles without forming extraneous byproducts that may potentially limit their application. Here we present a generalized approach for functionalizing MTs with antibodies in which covalent bonds are formed between the carbohydrate in F(c) region of polyclonal antibodies and the positively charged amino acids on the MT surface using the crosslinker succinimidyl 4-hydrazidoterephthalate hydrochloride (SHTH). Antibody-functionalized MTs (Ab-MTs) produced through this approach maintained motility characteristics and antigenic selectivity, and did not produce undesirable byproducts common to other approaches. We also demonstrate and characterize the application of these Ab-MTs for capturing and transporting bacterial and viral antigens. While this approach cannot be applied to monoclonal antibodies, which lack a carbohydrate moiety, it may be used for selectively functionalizing MT shuttles with a variety of carbohydrate-containing cargoes.


Assuntos
Anticorpos/metabolismo , Cinesinas/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Microtúbulos/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...