Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 38(14): 2437-2450, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30531835

RESUMO

Tumor progression is regulated by a complex interplay between neoplastic cells and the tumor microenvironment. Tumor-associated macrophages have been shown to promote breast cancer progression in advanced disease and more recently, in early stage cancers. However, little is known about the macrophage-derived factors that promote tumor progression in early stage lesions. Using a p53-null model of early stage mammary tumor progression, we found that Gas6 is highly expressed in pre-invasive lesions associated with increased infiltrating macrophages, as compared with those with few recruited macrophages. We show that F4/80+CD11b+ macrophages produce Gas6 in premalignant lesions in vivo, and that macrophage-derived Gas6 induces a tumor-like phenotype ex vivo. Using a 3-D co-culture system, we show that macrophage-derived Gas6 activates its receptor Axl and downstream survival signals including Akt and STAT3, which was accompanied by altered E-cadherin expression to induce a malignant morphology. In vivo studies demonstrated that deletion of stromal Gas6 delays early stage progression and decreases tumor formation, while tumor growth in established tumors remains unaffected. These studies suggest that macrophage-derived Gas6 is a critical regulator of the transition from premalignant to invasive cancer, and may lead to the development of unique biomarkers of neoplastic progression for patients with early stage breast cancer, including ductal carcinoma in situ.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Animais , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Proliferação de Células/fisiologia , Progressão da Doença , Feminino , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral/fisiologia
2.
Oncotarget ; 8(31): 50731-50746, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28881599

RESUMO

Breast cancer initiation, progression and metastasis rely on a complex interplay between tumor cells and their surrounding microenvironment. Infiltrating immune cells, including macrophages, promote mammary tumor progression and metastasis; however, less is known about the role of macrophages in early stage lesions. In this study, we utilized a transplantable p53-null model of early progression to characterize the immune cell components of early stage lesions. We show that macrophages are recruited to ductal hyperplasias with a high tumor-forming potential where they are differentiated and polarized toward a tumor-promoting phenotype. These macrophages are a unique subset of macrophages, characterized by pro-inflammatory, anti-inflammatory and immunosuppressive factors. Macrophage ablation studies showed that macrophages are required for both early stage progression and primary tumor formation. These studies suggest that therapeutic targeting of tumor-promoting macrophages may not only be an effective strategy to block tumor progression and metastasis, but may also have critical implications for breast cancer prevention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...