Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 604(7906): 437-446, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35444317

RESUMO

The human reference genome is the most widely used resource in human genetics and is due for a major update. Its current structure is a linear composite of merged haplotypes from more than 20 people, with a single individual comprising most of the sequence. It contains biases and errors within a framework that does not represent global human genomic variation. A high-quality reference with global representation of common variants, including single-nucleotide variants, structural variants and functional elements, is needed. The Human Pangenome Reference Consortium aims to create a more sophisticated and complete human reference genome with a graph-based, telomere-to-telomere representation of global genomic diversity. Here we leverage innovations in technology, study design and global partnerships with the goal of constructing the highest-possible quality human pangenome reference. Our goal is to improve data representation and streamline analyses to enable routine assembly of complete diploid genomes. With attention to ethical frameworks, the human pangenome reference will contain a more accurate and diverse representation of global genomic variation, improve gene-disease association studies across populations, expand the scope of genomics research to the most repetitive and polymorphic regions of the genome, and serve as the ultimate genetic resource for future biomedical research and precision medicine.


Assuntos
Genoma Humano , Genômica , Genoma Humano/genética , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA
2.
Elife ; 112022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35356864

RESUMO

Parent-of-origin effects are unexpectedly common in complex traits, including metabolic and neurological traits. Parent-of-origin effects can be modified by the environment, but the architecture of these gene-by-environmental effects on phenotypes remains to be unraveled. Previously, quantitative trait loci (QTL) showing context-specific parent-of-origin effects on metabolic traits were mapped in the F16 generation of an advanced intercross between LG/J and SM/J inbred mice. However, these QTL were not enriched for known imprinted genes, suggesting another mechanism is needed to explain these parent-of-origin effects phenomena. We propose that non-imprinted genes can generate complex parent-of-origin effects on metabolic traits through interactions with imprinted genes. Here, we employ data from mouse populations at different levels of intercrossing (F0, F1, F2, F16) of the LG/J and SM/J inbred mouse lines to test this hypothesis. Using multiple populations and incorporating genetic, genomic, and physiological data, we leverage orthogonal evidence to identify networks of genes through which parent-of-origin effects propagate. We identify a network comprised of three imprinted and six non-imprinted genes that show parent-of-origin effects. This epistatic network forms a nutritional responsive pathway and the genes comprising it jointly serve cellular functions associated with growth. We focus on two genes, Nnat and F2r, whose interaction associates with serum glucose levels across generations in high-fat-fed females. Single-cell RNAseq reveals that Nnat expression increases and F2r expression decreases in pre-adipocytes along an adipogenic trajectory, a result that is consistent with our observations in bulk white adipose tissue.


Assuntos
Herança Multifatorial , Locos de Características Quantitativas , Animais , Feminino , Genômica , Camundongos , Camundongos Endogâmicos , Fenótipo
3.
Cell Rep ; 33(1): 108237, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027654

RESUMO

We leverage the SM/J mouse to understand glycemic control in obesity. High-fat-fed SM/J mice initially develop poor glucose homeostasis relative to controls. Strikingly, their glycemic dysfunction resolves by 30 weeks of age despite persistent obesity. The mice dramatically expand their brown adipose depots as they resolve glycemic dysfunction. This occurs naturally and spontaneously on a high-fat diet, with no temperature or genetic manipulation. Removal of the brown adipose depot impairs insulin sensitivity, indicating that the expanded tissue is functioning as an insulin-stimulated glucose sink. We describe morphological, physiological, and transcriptomic changes that occur during the brown adipose expansion and remission of glycemic dysfunction, and focus on Sfrp1 (secreted frizzled-related protein 1) as a compelling candidate that may underlie this phenomenon. Understanding how the expanded brown adipose contributes to glycemic control in SM/J mice will open the door for innovative therapies aimed at improving metabolic complications in obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Glicemia/metabolismo , Obesidade/terapia , Animais , Feminino , Humanos , Masculino , Camundongos , Obesidade/patologia
4.
Physiol Rep ; 8(20): e14573, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33113267

RESUMO

Maintenance of functional ß-cell mass is critical to preventing diabetes, but the physiological mechanisms that cause ß-cell populations to thrive or fail in the context of obesity are unknown. High fat-fed SM/J mice spontaneously transition from hyperglycemic-obese to normoglycemic-obese with age, providing a unique opportunity to study ß-cell adaptation. Here, we characterize insulin homeostasis, islet morphology, and ß-cell function during SM/J's diabetic remission. As they resolve hyperglycemia, obese SM/J mice dramatically increase circulating and pancreatic insulin levels while improving insulin sensitivity. Immunostaining of pancreatic sections reveals that obese SM/J mice selectively increase ß-cell mass but not α-cell mass. Obese SM/J mice do not show elevated ß-cell mitotic index, but rather elevated α-cell mitotic index. Functional assessment of isolated islets reveals that obese SM/J mice increase glucose-stimulated insulin secretion, decrease basal insulin secretion, and increase islet insulin content. These results establish that ß-cell mass expansion and improved ß-cell function underlie the resolution of hyperglycemia, indicating that obese SM/J mice are a valuable tool for exploring how functional ß-cell mass can be recovered in the context of obesity.


Assuntos
Proliferação de Células , Células Secretoras de Insulina/fisiologia , Obesidade/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Feminino , Células Secretoras de Glucagon/fisiologia , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Obesidade/etiologia , Obesidade/patologia
5.
Physiol Genomics ; 52(6): 223-233, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32338175

RESUMO

Adipose is a dynamic endocrine organ that is critical for regulating metabolism and is highly responsive to nutritional environment. Brown adipose tissue is an exciting potential therapeutic target; however, there are no systematic studies of gene-by-environment interactions affecting function of this organ. We leveraged a weighted gene coexpression network analysis to identify transcriptional networks in brown adipose tissue from LG/J and SM/J inbred mice fed high- or low-fat diets and correlate these networks with metabolic phenotypes. We identified eight primary gene network modules associated with variation in obesity and diabetes-related traits. Four modules were enriched for metabolically relevant processes such as immune and cytokine response, cell division, peroxisome functions, and organic molecule metabolic processes. The relative expression of genes in these modules is highly dependent on both genetic background and dietary environment. Genes in the immune/cytokine response and cell division modules are particularly highly expressed in high fat-fed SM/J mice, which show unique brown adipose-dependent remission of diabetes. The interconnectivity of genes in these modules is also heavily dependent on diet and strain, with most genes showing both higher expression and coexpression under the same context. We highlight several genes of interest, Col28a1, Cyp26b1, Bmp8b, and Ngef, that have distinct expression patterns among strain-by-diet contexts and fall under metabolic quantitative trait loci previously mapped in an F16 generation of an advanced intercross between LG/J and SM/J. Each of these genes have some connection to obesity and diabetes-related traits, but have not been studied in brown adipose tissue. Our results provide important insights into the relationship between brown adipose and systemic metabolism by being the first gene-by-environment study of brown adipose transcriptional networks.


Assuntos
Tecido Adiposo Marrom/fisiologia , Dieta , Obesidade/genética , Tecido Adiposo Marrom/metabolismo , Animais , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Feminino , Redes Reguladoras de Genes , Patrimônio Genético , Masculino , Camundongos , Camundongos Endogâmicos , Modelos Animais , Obesidade/metabolismo , Obesidade/patologia , Fenótipo , Locos de Características Quantitativas
6.
Physiol Genomics ; 50(11): 947-955, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30240346

RESUMO

The dramatic increase in global prevalence of metabolic disease is inexplicable when considering only environmental or only genetic factors, leading to the need to explore the possible roles of epigenetic factors. A great deal of progress has been made in this interdisciplinary field in recent years, with many studies investigating various aspects of the metabolic syndrome and its associated epigenetic changes. Rodent models of metabolic diseases have been particularly illuminating because of the ability to leverage tools such as genetic and environmental modifications. The current review summarizes recent breakthroughs regarding epigenetic markers in studies of obesity, Type II diabetes, and cardiovascular disease, the three major disorders associated with metabolic syndrome. We also discuss open questions and future directions for integrating genomic, epigenomic, and phenotypic big biodata toward understanding metabolic syndrome etiology.


Assuntos
Epigênese Genética , Síndrome Metabólica/genética , Animais , Cromatina/química , Cromatina/genética , Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Histonas/genética , Histonas/metabolismo , Humanos , Obesidade/genética , RNA não Traduzido
7.
PLoS Genet ; 13(2): e1006612, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28166236

RESUMO

Sumoylation regulates a wide range of essential cellular functions through diverse mechanisms that remain to be fully understood. Using S. cerevisiae, a model organism with a single essential SUMO gene (SMT3), we developed a library of >250 mutant strains with single or multiple amino acid substitutions of surface or core residues in the Smt3 protein. By screening this library using plate-based assays, we have generated a comprehensive structure-function based map of Smt3, revealing essential amino acid residues and residues critical for function under a variety of genotoxic and proteotoxic stress conditions. Functionally important residues mapped to surfaces affecting Smt3 precursor processing and deconjugation from protein substrates, covalent conjugation to protein substrates, and non-covalent interactions with E3 ligases and downstream effector proteins containing SUMO-interacting motifs. Lysine residues potentially involved in formation of polymeric chains were also investigated, revealing critical roles for polymeric chains, but redundancy in specific chain linkages. Collectively, our findings provide important insights into the molecular basis of signaling through sumoylation. Moreover, the library of Smt3 mutants represents a valuable resource for further exploring the functions of sumoylation in cellular stress response and other SUMO-dependent pathways.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Relação Estrutura-Atividade , Sumoilação/efeitos dos fármacos , Substituição de Aminoácidos/genética , Análise Mutacional de DNA , Mutagênese/genética , Mutagênicos/toxicidade , Ligação Proteica , Saccharomyces cerevisiae/química , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...