Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
2.
Nat Cell Biol ; 25(8): 1089-1100, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468756

RESUMO

The Human BioMolecular Atlas Program (HuBMAP) aims to create a multi-scale spatial atlas of the healthy human body at single-cell resolution by applying advanced technologies and disseminating resources to the community. As the HuBMAP moves past its first phase, creating ontologies, protocols and pipelines, this Perspective introduces the production phase: the generation of reference spatial maps of functional tissue units across many organs from diverse populations and the creation of mapping tools and infrastructure to advance biomedical research.

3.
Front Mol Biosci ; 9: 1022775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465564

RESUMO

Human disease states are biomolecularly multifaceted and can span across phenotypic states, therefore it is important to understand diseases on all levels, across cell types, and within and across microanatomical tissue compartments. To obtain an accurate and representative view of the molecular landscape within human lungs, this fragile tissue must be inflated and embedded to maintain spatial fidelity of the location of molecules and minimize molecular degradation for molecular imaging experiments. Here, we evaluated agarose inflation and carboxymethyl cellulose embedding media and determined effective tissue preparation protocols for performing bulk and spatial mass spectrometry-based omics measurements. Mass spectrometry imaging methods were optimized to boost the number of annotatable molecules in agarose inflated lung samples. This optimized protocol permitted the observation of unique lipid distributions within several airway regions in the lung tissue block. Laser capture microdissection of these airway regions followed by high-resolution proteomic analysis allowed us to begin linking the lipidome with the proteome in a spatially resolved manner, where we observed proteins with high abundance specifically localized to the airway regions. We also compared our mass spectrometry results to lung tissue samples preserved using two other inflation/embedding media, but we identified several pitfalls with the sample preparation steps using this preservation method. Overall, we demonstrated the versatility of the inflation method, and we can start to reveal how the metabolome, lipidome, and proteome are connected spatially in human lungs and across disease states through a variety of different experiments.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36413377

RESUMO

An improved understanding of the human lung necessitates advanced systems models informed by an ever-increasing repertoire of molecular omics, cellular, imaging, and pathological datasets. To centralize and standardize information across broad lung research efforts we expanded the LungMAP.net website into a new gateway portal. This portal connects a broad spectrum of research networks, bulk and single-cell multi-omics data and a diverse collection of image data that span mammalian lung development, and disease. The data are standardized across species and technologies using harmonized data and metadata models that leverage recent advances including those from the Human Cell Atlas, diverse ontologies, and the LungMAP CellCards initiative. To cultivate future discoveries, we have aggregated a diverse collection of single-cell atlases for multiple species (human, rhesus, mouse), to enable consistent queries across technologies, cohorts, age, disease, and drug treatment. These atlases are provided as independent and integrated queryable datasets, with an emphasis on dynamic visualization, figure generation, re-analysis, cell-type curation, and automated reference-based classification of user-provided single-cell genomics datasets (Azimuth). As this resource grows, we intend to increase the breadth of available interactive interfaces, supported data types, data portals and datasets from LungMAP and external research efforts.

5.
Am J Respir Crit Care Med ; 205(2): 208-218, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34752721

RESUMO

Rationale: The current understanding of human lung development derives mostly from animal studies. Although transcript-level studies have analyzed human donor tissue to identify genes expressed during normal human lung development, protein-level analysis that would enable the generation of new hypotheses on the processes involved in pulmonary development are lacking. Objectives: To define the temporal dynamic of protein expression during human lung development. Methods: We performed proteomics analysis of human lungs at 10 distinct times from birth to 8 years to identify the molecular networks mediating postnatal lung maturation. Measurements and Main Results: We identified 8,938 proteins providing a comprehensive view of the developing human lung proteome. The analysis of the data supports the existence of distinct molecular substages of alveolar development and predicted the age of independent human lung samples, and extensive remodeling of the lung proteome occurred during postnatal development. Evidence of post-transcriptional control was identified in early postnatal development. An extensive extracellular matrix remodeling was supported by changes in the proteome during alveologenesis. The concept of maturation of the immune system as an inherent part of normal lung development was substantiated by flow cytometry and transcriptomics. Conclusions: This study provides the first in-depth characterization of the human lung proteome during development, providing a unique proteomic resource freely accessible at Lungmap.net. The data support the extensive remodeling of the lung proteome during development, the existence of molecular substages of alveologenesis, and evidence of post-transcriptional control in early postnatal development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Proteínas/genética , Proteínas/metabolismo , Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Proteômica
6.
Data Brief ; 22: 365-372, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30596133

RESUMO

This data is a curated collection of visual images of gene expression patterns from the pre- and post-natal mouse lung, accompanied by associated mRNA probe sequences and RNA-Seq expression profiles. Mammalian lungs undergo significant growth and cellular differentiation before and after the transition to breathing air. Documenting normal lung development is an important step in understanding abnormal lung development, as well as the challenges faced during a preterm birth. Images in this dataset indicate the spatial distribution of mRNA transcripts for over 500 different genes that are active during lung development, as initially determined via RNA-Seq. Images were systematically acquired using high-throughput in situ hybridization with non-radioactive digoxigenin-labeled mRNA probes across mouse lungs from developmental time points E16.5, E18.5, P7, and P28. The dataset was produced as part of The Molecular Atlas of Lung Development Program (LungMAP) and is hosted at https://lungmap.net. This manuscript describes the nature of the data and the protocols for generating the dataset.

7.
Sci Rep ; 8(1): 13455, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194354

RESUMO

Cell type-resolved proteome analyses of the brain, heart and liver have been reported, however a similar effort on the lipidome is currently lacking. Here we applied liquid chromatography-tandem mass spectrometry to characterize the lipidome of major lung cell types isolated from human donors, representing the first lipidome map of any organ. We coupled this with cell type-resolved proteomics of the same samples (available at Lungmap.net). Complementary proteomics analyses substantiated the functional identity of the isolated cells. Lipidomics analyses showed significant variations in the lipidome across major human lung cell types, with differences most evident at the subclass and intra-subclass (i.e. total carbon length of the fatty acid chains) level. Further, lipidomic signatures revealed an overarching posture of high cellular cooperation within the human lung to support critical functions. Our complementary cell type-resolved lipid and protein datasets serve as a rich resource for analyses of human lung function.


Assuntos
Bases de Dados de Proteínas , Metabolismo dos Lipídeos/fisiologia , Pulmão/citologia , Pulmão/fisiologia , Feminino , Humanos , Masculino
8.
J Proteome Res ; 17(8): 2623-2634, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972024

RESUMO

Lung diseases and disorders are a leading cause of death among infants. Many of these diseases and disorders are caused by premature birth and underdeveloped lungs. In addition to developmentally related disorders, the lungs are exposed to a variety of environmental contaminants and xenobiotics upon birth that can cause breathing issues and are progenitors of cancer. In order to gain a deeper understanding of the developing lung, we applied an activity-based chemoproteomics approach for the functional characterization of the xenometabolizing cytochrome P450 enzymes, active ATP and nucleotide binding enzymes, and serine hydrolases using a suite of activity-based probes (ABPs). We detected P450 activity primarily in the postnatal lung; using our ATP-ABP, we characterized a wide range of ATPases and other active nucleotide- and nucleic acid-binding enzymes involved in multiple facets of cellular metabolism throughout development. ATP-ABP targets include kinases, phosphatases, NAD- and FAD-dependent enzymes, RNA/DNA helicases, and others. The serine hydrolase-targeting probe detected changes in the activities of several proteases during the course of lung development, yielding insights into protein turnover at different stages of development. Select activity-based probe targets were then correlated with RNA in situ hybridization analyses of lung tissue sections.


Assuntos
Pulmão/enzimologia , Proteômica , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Lactente , Recém-Nascido , Pulmão/química , Pulmão/crescimento & desenvolvimento , Nucleotídeos/metabolismo , Serina Endopeptidases/metabolismo
9.
J Am Soc Mass Spectrom ; 29(2): 316-322, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28755258

RESUMO

Constant mode ambient mass spectrometry imaging (MSI) of tissue sections with high lateral resolution of better than 10 µm was performed by combining shear force microscopy with nanospray desorption electrospray ionization (nano-DESI). Shear force microscopy enabled precise control of the distance between the sample and nano-DESI probe during MSI experiments and provided information on sample topography. Proof-of-concept experiments were performed using lung and brain tissue sections representing spongy and dense tissues, respectively. Topography images obtained using shear force microscopy were comparable to the results obtained using contact profilometry over the same region of the tissue section. Variations in tissue height were found to be dependent on the tissue type and were in the range of 0-5 µm for lung tissue and 0-3 µm for brain tissue sections. Ion images of phospholipids obtained in this study are in good agreement with literature data. Normalization of nano-DESI MSI images to the signal of the internal standard added to the extraction solvent allowed us to construct high-resolution ion images free of matrix effects. Graphical Abstract ᅟ.


Assuntos
Química Encefálica , Pulmão/química , Microscopia de Força Atômica/métodos , Imagem Óptica/métodos , Fosfolipídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Força Atômica/instrumentação , Imagem Óptica/instrumentação , Espectrometria de Massas por Ionização por Electrospray/instrumentação
10.
Am J Physiol Lung Cell Mol Physiol ; 313(5): L733-L740, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28798251

RESUMO

The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users.


Assuntos
Bases de Dados Genéticas , Redes Reguladoras de Genes/genética , Pulmão/crescimento & desenvolvimento , Organogênese/genética , Proteômica , Animais , Humanos , Proteômica/métodos , Regeneração/genética
11.
Sci Rep ; 7: 40555, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145528

RESUMO

Lung immaturity is a major cause of morbidity and mortality in premature infants. Understanding the molecular mechanisms driving normal lung development could provide insights on how to ameliorate disrupted development. While transcriptomic and proteomic analyses of normal lung development have been previously reported, characterization of changes in the lipidome is lacking. Lipids play significant roles in the lung, such as dipalmitoylphosphatidylcholine in pulmonary surfactant; however, many of the roles of specific lipid species in normal lung development, as well as in disease states, are not well defined. In this study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to investigate the murine lipidome during normal postnatal lung development. Lipidomics analysis of lungs from post-natal day 7, day 14 and 6-8 week mice (adult) identified 924 unique lipids across 21 lipid subclasses, with dramatic alterations in the lipidome across developmental stages. Our data confirmed previously recognized aspects of post-natal lung development and revealed several insights, including in sphingolipid-mediated apoptosis, inflammation and energy storage/usage. Complementary proteomics, metabolomics and chemical imaging corroborated these observations. This multi-omic view provides a unique resource and deeper insight into normal pulmonary development.


Assuntos
Metabolismo dos Lipídeos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Metabolômica/métodos , Animais , Animais Recém-Nascidos , Apoptose , Ácidos Graxos/metabolismo , Inflamação/patologia , Redes e Vias Metabólicas , Metaboloma , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/crescimento & desenvolvimento , Esfingolipídeos/metabolismo
12.
J Cardiovasc Dev Dis ; 4(4)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29367553

RESUMO

Blood flow is critical for normal cardiac development. Hemodynamic stimuli outside of normal ranges can lead to overt cardiac defects, but how early heart tissue remodels in response to altered hemodynamics is poorly understood. This study investigated changes in tissue collagen in response to hemodynamic overload in the chicken embryonic heart outflow tract (OFT) during tubular heart stages (HH18 to HH24, ~24 h). A suture tied around the OFT at HH18 was tightened to constrict the lumen for ~24 h (constriction range at HH24: 15-60%). Expression of fibril collagens I and III and fibril organizing collagens VI and XIV were quantified at the gene and protein levels via qPCR and quantitative immunofluorescence. Collagen I was slightly elevated upstream of the band and in the cushions in banded versus control OFTs. Changes in collagen III were not observed. Collagen VI deposition was elevated downstream of the band, but not overall. Collagen XIV deposition increased throughout the OFT, and strongly correlated to lumen constriction. Interestingly, organization of collagen I fibrils was observed for the tighter banded embryos in regions that also showed increase in collagen XIV deposition, suggesting a potentially key role for collagens I and XIV in the structural adaptation of embryonic heart tissue to hemodynamic overload.

13.
Sci Rep ; 6: 39223, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004771

RESUMO

Laser capture microdissection (LCM)-enabled region-specific tissue analyses are critical to better understand complex multicellular processes. However, current proteomics workflows entail several manual sample preparation steps and are challenged by the microscopic mass-limited samples generated by LCM, impacting measurement robustness, quantification and throughput. Here, we coupled LCM with a proteomics workflow that provides fully automated analysis of proteomes from microdissected tissues. Benchmarking against the current state-of-the-art in ultrasensitive global proteomics (FASP workflow), our approach demonstrated significant improvements in quantification (~2-fold lower variance) and throughput (>5 times faster). Using our approach we for the first time characterized, to a depth of >3,400 proteins, the ontogeny of protein changes during normal lung development in microdissected alveolar tissue containing only 4,000 cells. Our analysis revealed seven defined modules of coordinated transcription factor-signaling molecule expression patterns, suggesting a complex network of temporal regulatory control directs normal lung development with epigenetic regulation fine-tuning pre-natal developmental processes.


Assuntos
Pulmão/metabolismo , Proteoma/análise , Proteômica , Animais , Animais Recém-Nascidos , Automação , Cromatografia Líquida de Alta Pressão , Microdissecção e Captura a Laser , Camundongos , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 1236-1239, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28268548

RESUMO

Subdivision-based image registration has previously been applied to co-localize digital information extracted from rigid structures in biological specimens, such as the brain. Here, we describe and demonstrate the creation and application of a two-dimensional subdivision-based atlas representing a dynamic structure: the outflow tract of the developing chicken heart. The atlas is designed to segment three different anatomical layers of the outflow tract, and is demonstrated on the characterization of collagen XIV in both control and induced abnormal flow specimens. Abnormal blood flow in the embryonic developing heart can lead to congenital heart disease. Comparing local cellular and sub-cellular changes that are caused by abnormal flow can assist in understanding the molecular pathways involved in maladaptations of the heart and congenital defects. This study demonstrates the approach and potential for more extensive applications of the subdivision-based atlas for the embryonic chicken heart.


Assuntos
Diagnóstico por Imagem , Coração/diagnóstico por imagem , Coração/embriologia , Fluxo Sanguíneo Regional , Animais , Embrião de Galinha , Galinhas , Cardiopatias Congênitas/diagnóstico por imagem
15.
Toxicol Sci ; 146(1): 65-88, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25858911

RESUMO

Computational fluid dynamics (CFD) modeling is well suited for addressing species-specific anatomy and physiology in calculating respiratory tissue exposures to inhaled materials. In this study, we overcame prior CFD model limitations to demonstrate the importance of realistic, transient breathing patterns for predicting site-specific tissue dose. Specifically, extended airway CFD models of the rat and human were coupled with airway region-specific physiologically based pharmacokinetic (PBPK) tissue models to describe the kinetics of 3 reactive constituents of cigarette smoke: acrolein, acetaldehyde and formaldehyde. Simulations of aldehyde no-observed-adverse-effect levels for nasal toxicity in the rat were conducted until breath-by-breath tissue concentration profiles reached steady state. Human oral breathing simulations were conducted using representative aldehyde yields from cigarette smoke, measured puff ventilation profiles and numbers of cigarettes smoked per day. As with prior steady-state CFD/PBPK simulations, the anterior respiratory nasal epithelial tissues received the greatest initial uptake rates for each aldehyde in the rat. However, integrated time- and tissue depth-dependent area under the curve (AUC) concentrations were typically greater in the anterior dorsal olfactory epithelium using the more realistic transient breathing profiles. For human simulations, oral and laryngeal tissues received the highest local tissue dose with greater penetration to pulmonary tissues than predicted in the rat. Based upon lifetime average daily dose comparisons of tissue hot-spot AUCs (top 2.5% of surface area-normalized AUCs in each region) and numbers of cigarettes smoked/day, the order of concern for human exposures was acrolein > formaldehyde > acetaldehyde even though acetaldehyde yields were 10-fold greater than formaldehyde and acrolein.


Assuntos
Aldeídos/metabolismo , Modelos Biológicos , Fumaça , Aldeídos/farmacocinética , Animais , Humanos , Ratos , Nicotiana
16.
BMC Med Imaging ; 14: 1, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24393332

RESUMO

BACKGROUND: Assessing heterogeneity in lung images can be an important diagnosis tool. We present a novel and objective method for assessing lung damage in a rat model of emphysema. We combined a three-dimensional (3D) computer graphics method-octree decomposition-with a geostatistics-based approach for assessing spatial relationships-the variogram-to evaluate disease in 3D computed tomography (CT) image volumes. METHODS: Male, Sprague-Dawley rats were dosed intratracheally with saline (control), or with elastase dissolved in saline to either the whole lung (for mild, global disease) or a single lobe (for severe, local disease). Gated 3D micro-CT images were acquired on the lungs of all rats at end expiration. Images were masked, and octree decomposition was performed on the images to reduce the lungs to homogeneous blocks of 2 × 2 × 2, 4 × 4 × 4, and 8 × 8 × 8 voxels. To focus on lung parenchyma, small blocks were ignored because they primarily defined boundaries and vascular features, and the spatial variance between all pairs of the 8 × 8 × 8 blocks was calculated as the square of the difference of signal intensity. Variograms-graphs of distance vs. variance-were constructed, and results of a least-squares-fit were compared. The robustness of the approach was tested on images prepared with various filtering protocols. Statistical assessment of the similarity of the three control rats was made with a Kruskal-Wallis rank sum test. A Mann-Whitney-Wilcoxon rank sum test was used to measure statistical distinction between individuals. For comparison with the variogram results, the coefficient of variation and the emphysema index were also calculated for all rats. RESULTS: Variogram analysis showed that the control rats were statistically indistinct (p = 0.12), but there were significant differences between control, mild global disease, and severe local disease groups (p < 0.0001). A heterogeneity index was calculated to describe the difference of an individual variogram from the control average. This metric also showed clear separation between dose groups. The coefficient of variation and the emphysema index, on the other hand, did not separate groups. CONCLUSION: These results suggest the octree decomposition and variogram analysis approach may be a rapid, non-subjective, and sensitive imaging-based biomarker for characterizing lung disease.


Assuntos
Enfisema/diagnóstico por imagem , Imageamento Tridimensional/métodos , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Animais , Modelos Animais de Doenças , Enfisema/patologia , Pulmão/patologia , Masculino , Interpretação de Imagem Radiográfica Assistida por Computador , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade
17.
Artigo em Inglês | MEDLINE | ID: mdl-25570697

RESUMO

Understanding the structure of microbial biofilms and other complex microbial communities is now possible through x-ray microtomography imaging. Feature detection and image processing for this type of data focuses on efficiently identifying and segmenting biofilm biomass in the datasets. These datasets are very large and segmentation often requires manual interventions due to low contrast between objects and high noise levels. New software is required for the effectual interpretation and analysis of such data. This work specifies the evolution and ability to analyze and visualize high resolution x-ray microtomography datasets. Major functionalities include read/write with multiple popular file formats, down-sampling large datasets to generate quick-views on low-power computers, image processing, and generating high quality output images and videos. These capabilities have been wrapped into a new interactive software toolkit, BiofilmViewer. A major focus of our work is to facilitate data transfer and to utilize the capabilities of existing powerful visualization and analytical tools including MATLAB, ImageJ, Paraview, Chimera, Vaa3D, Cell Profiler, Icy, BioImageXD, and Drishti.


Assuntos
Biofilmes , Imageamento Tridimensional/métodos , Software , Microtomografia por Raio-X , Síncrotrons , Interface Usuário-Computador
18.
Anal Chem ; 85(20): 9596-603, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24040919

RESUMO

Nanospray desorption electrospray ionization (nano-DESI) combined with tandem mass spectrometry (MS/MS), high-resolution mass analysis of the fragment ions (m/Δm = 17 500 at m/z 200), and rapid spectral acquisition enabled simultaneous imaging and identification of a large number of metabolites and lipids from 92 selected m/z windows (±1 Da) with a spatial resolution of better than 150 µm. Mouse uterine sections of implantation sites on day 6 of pregnancy were analyzed in the ambient environment without any sample pretreatment. MS/MS imaging was performed by scanning the sample under the nano-DESI probe at 10 µm/s, while higher-energy collision-induced dissociation (HCD) spectra were acquired for a targeted inclusion list of 92 m/z values at a rate of ∼6.3 spectra/s. Molecular ions and their corresponding fragments, separated by high-resolution mass analysis, were assigned on the basis of accurate mass measurement. Using this approach, we were able to identify and image both abundant and low-abundance isobaric and isomeric species within each m/z window. MS/MS analysis enabled efficient separation and identification of isomeric and isobaric phospholipids that are difficult to separate in full-scan mode. Furthermore, we identified several metabolites associated with early pregnancy and obtained the first 2D images of these molecules.


Assuntos
Imagem Molecular/métodos , Nanotecnologia/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Feminino , Metabolismo dos Lipídeos , Masculino , Metabolômica , Camundongos , Gravidez , Dióxido de Silício/química , Fatores de Tempo
19.
Acad Radiol ; 20(10): 1264-71, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24029058

RESUMO

RATIONALE AND OBJECTIVES: To investigate the ability of variogram analysis of octree-decomposed computed tomography (CT) images and volume change maps to detect radiation-induced damage in rat lungs. MATERIALS AND METHODS: The lungs of female Sprague-Dawley rats were exposed to one of five absorbed doses (0, 6, 9, 12, or 15 Gy) of gamma radiation from a Co-60 source. At 6 months postexposure, pulmonary function tests were performed and four-dimensional (4D) CT images were acquired using a respiratory-gated microCT scanner. Volume change maps were then calculated from the 4DCT images. Octree decomposition was performed on CT images and volume change maps, and variogram analysis was applied to the decomposed images. Correlations of measured parameters with dose were evaluated. RESULTS: The effects of irradiation were not detectable from measured parameters, indicating only mild lung damage. Additionally, there were no significant correlations of pulmonary function results or CT densitometry with radiation dose. However, the variogram analysis did detect a significant correlation with dose in both the CT images (r = -0.57, P = .003) and the volume change maps (r = -0.53, P = .008). CONCLUSION: This is the first study to use variogram analysis of lung images to assess pulmonary damage in a model of radiation injury. Results show that this approach is more sensitive to detecting radiation damage than conventional measures such as pulmonary function tests or CT densitometry.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Pneumonite por Radiação/diagnóstico por imagem , Pneumonite por Radiação/etiologia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/efeitos adversos , Tomografia Computadorizada por Raios X/métodos , Animais , Feminino , Doses de Radiação , Radiometria/métodos , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Exp Lung Res ; 39(6): 249-57, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23786464

RESUMO

The use of anatomically accurate, animal-specific airway geometries is important for understanding and modeling the physiology of the respiratory system. One approach for acquiring detailed airway architecture is to create a bronchial cast of the conducting airways. However, typical casting procedures either do not faithfully preserve the in vivo branching angles or produce rigid casts that when removed for imaging are fragile and thus easily damaged. We address these problems by creating an in situ bronchial cast of the conducting airways in rats that can be subsequently imaged in situ using three-dimensional micro-CT imaging. We also demonstrate that deformations in airway branch angles resulting from the casting procedure are small, and that these angle deformations can be reversed through an interactive adjustment of the segmented cast geometry. Animal work was approved by the Institutional Animal Care and Use Committee of Pacific Northwest National Laboratory.


Assuntos
Brônquios/anatomia & histologia , Molde por Corrosão/métodos , Imageamento Tridimensional/métodos , Microtomografia por Raio-X/métodos , Animais , Artefatos , Broncografia , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...