Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 110(21): 3458-3483, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36327895

RESUMO

Microglial research has advanced considerably in recent decades yet has been constrained by a rolling series of dichotomies such as "resting versus activated" and "M1 versus M2." This dualistic classification of good or bad microglia is inconsistent with the wide repertoire of microglial states and functions in development, plasticity, aging, and diseases that were elucidated in recent years. New designations continuously arising in an attempt to describe the different microglial states, notably defined using transcriptomics and proteomics, may easily lead to a misleading, although unintentional, coupling of categories and functions. To address these issues, we assembled a group of multidisciplinary experts to discuss our current understanding of microglial states as a dynamic concept and the importance of addressing microglial function. Here, we provide a conceptual framework and recommendations on the use of microglial nomenclature for researchers, reviewers, and editors, which will serve as the foundations for a future white paper.


Assuntos
Microglia
2.
Artigo em Inglês | MEDLINE | ID: mdl-33562262

RESUMO

The Research Centers in Minority Institutions (RCMI) Program was congressionally mandated in 1985 to build research capacity at institutions that currently and historically recruit, train, and award doctorate degrees in the health professions and health-related sciences, primarily to individuals from underrepresented and minority populations. RCMI grantees share similar infrastructure needs and institutional goals. Of particular importance is the professional development of multidisciplinary teams of academic and community scholars (the "workforce") and the harnessing of the heterogeneity of thought (the "thinkforce") to reduce health disparities. The purpose of this report is to summarize the presentations and discussion at the RCMI Investigator Development Core (IDC) Workshop, held in conjunction with the RCMI Program National Conference in Bethesda, Maryland, in December 2019. The RCMI IDC Directors provided information about their professional development activities and Pilot Projects Programs and discussed barriers identified by new and early-stage investigators that limit effective career development, as well as potential solutions to overcome such obstacles. This report also proposes potential alignments of professional development activities, targeted goals and common metrics to track productivity and success.


Assuntos
Pesquisa Biomédica , Grupos Minoritários , Humanos , Maryland , Pesquisadores , Recursos Humanos
3.
Sci Rep ; 11(1): 4549, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633185

RESUMO

Central nervous system (CNS) injury and infection can result in profound tissue remodeling in the brain, the mechanism and purpose of which is poorly understood. Infection with the protozoan parasite Toxoplasma gondii causes chronic infection and inflammation in the brain parenchyma. Control of parasite replication requires the continuous presence of IFNγ-producing T cells to keep T. gondii in its slowly replicating cyst form. During infection, a network of extracellular matrix fibers, revealed using multiphoton microscopy, forms in the brain. The origin and composition of these structures are unknown but the fibers have been observed to act as a substrate for migrating T cells. In this study, we show a critical regulator of extracellular matrix (ECM) remodeling, Secreted Protein, Acidic, Rich in Cysteine (SPARC), is upregulated in the brain during the early phases of infection in the frontal cortex. In the absence of SPARC, a reduced and disordered fibrous network, increased parasite burden, and reduced antigen-specific T cell entry into the brain points to a role for SPARC in T cell recruitment to and migration within the brain. We also report SPARC can directly bind to CCR7 ligands CCL19 and CCL21 but not CXCL10, and enhance migration toward a chemokine gradient. Measurement of T cell behavior points to tissue remodeling being important for access of immune cells to the brain and facilitating cellular locomotion. Together, these data identify SPARC as an important regulatory component of immune cell trafficking and access to the inflamed CNS.


Assuntos
Matriz Extracelular/metabolismo , Osteonectina/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Toxoplasma/fisiologia , Toxoplasmose Cerebral/etiologia , Toxoplasmose Cerebral/metabolismo , Animais , Antígenos de Protozoários/imunologia , Biomarcadores , Encéfalo/irrigação sanguínea , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/parasitologia , Movimento Celular/imunologia , Quimiocina CCL21/metabolismo , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita/imunologia , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Osteonectina/genética , Ligação Proteica , Receptores CCR7
4.
Front Immunol ; 9: 1992, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254630

RESUMO

Increasing prevalence in obesity has become a significant public concern. C57BL/6J mice are prone to diet-induced obesity (DIO) when fed high-fat diet (HFD), and develop chronic inflammation and metabolic syndrome, making them a good model to analyze mechanisms whereby obesity elicits pathologies. DIO mice demonstrated profound sex differences in response to HFD with respect to inflammation and hypothalamic function. First, we determined that males are prone to DIO, while females are resistant. Ovariectomized females, on the other hand, are susceptible to DIO, implying protection by ovarian hormones. Males, but not females, exhibit changes in hypothalamic neuropeptide expression. Surprisingly, ovariectomized females remain resistant to neuroendocrine changes, showing that ovarian hormones are not necessary for protection. Second, obese mice exhibit sex differences in DIO-induced inflammation. Microglial activation and peripheral macrophage infiltration is seen in the hypothalami of males, while females are protected from the increase in inflammatory cytokines and do not exhibit microglia morphology changes nor monocyte-derived macrophage infiltration, regardless of the presence of ovarian hormones. Strikingly, the anti-inflammatory cytokine IL-10 is increased in the hypothalami of females but not males. Third, this study posits a potential mechanism of obesity-induced impairment of hypothalamic function whereby obese males exhibit reduced levels of synaptic proteins in the hypothalamus and fewer spines in GnRH neurons, located in the areas exhibiting macrophage infiltration. Our studies suggest that inflammation-induced synaptic remodeling is potentially responsible for hypothalamic impairment that may contribute to diminished levels of gonadotropin hormones, testosterone, and sperm numbers, which we observe and corresponds to the observations in obese humans. Taken together, our data implicate neuro-immune mechanisms underlying sex-specific differences in obesity-induced impairment of the hypothalamic function with potential consequences for reproduction and fertility.


Assuntos
Hipotálamo/imunologia , Macrófagos/imunologia , Obesidade/imunologia , Caracteres Sexuais , Coluna Vertebral/imunologia , Animais , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Feminino , Fertilidade/efeitos dos fármacos , Fertilidade/imunologia , Hipotálamo/patologia , Interleucina-10/imunologia , Macrófagos/patologia , Masculino , Camundongos , Microglia/imunologia , Microglia/patologia , Obesidade/induzido quimicamente , Obesidade/patologia , Coluna Vertebral/patologia
5.
ASN Neuro ; 10: 1759091418782304, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30016877

RESUMO

Continuous exposure to aerosolized fine (particle size ≤2.5 µm) and ultrafine (particle size ≤0.1 µm) particulates can trigger innate inflammatory responses in the lung and brain depending on particle composition. Most studies of manmade toxicants use inhalation exposure routes, whereas most studies of allergens use soluble solutions administered via intranasal or injection routes. Here, we tested whether continuous inhalation exposure to aerosolized Alternaria alternata particulates (a common fungal allergen associated with asthma) would induce innate inflammatory responses in the lung and brain. By designing a new environmental chamber able to control particle size distribution and mass concentration, we continuously exposed adult mice to aerosolized ultrafine Alternaria particulates for 96 hr. Despite induction of innate immune responses in the lung, induction of innate immune responses in whole brain samples was not detected by quantitative polymerase chain reaction or flow cytometry. However, exposure did trigger decreases in Arginase 1, inducible nitric oxide synthase, and tumor necrosis factor alpha mRNA in the brainstem samples containing the central nervous system respiratory circuit (the dorsal respiratory group, ventral respiratory group, and the pre-Bötzinger and Bötzinger complexes). In addition, a significant decrease in the percentage of Toll-like receptor 2-expressing brainstem microglia was detected by flow cytometry. Histologic analysis revealed a significant decrease in Iba1 but not glial fibrillary acidic protein immunoreactivity in both the brainstem and the hippocampus. Together these data indicate that inhalation exposure to a natural fungal allergen under conditions sufficient to induce lung inflammation surprisingly causes reductions in baseline expression of select innate immune molecules (similar to that observed during endotoxin tolerance) in the region of the central nervous system controlling respiration.


Assuntos
Alérgenos/toxicidade , Tronco Encefálico/metabolismo , Fungos/química , Imunidade Inata/fisiologia , Pneumonia/etiologia , Pneumonia/patologia , Animais , Antígenos CD/metabolismo , Arginase/metabolismo , Modelos Animais de Doenças , Exposição por Inalação , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro/metabolismo
6.
Neuron ; 94(2): 278-293.e9, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28426964

RESUMO

Microglia play critical roles in brain development, homeostasis, and neurological disorders. Here, we report that human microglial-like cells (iMGLs) can be differentiated from iPSCs to study their function in neurological diseases, like Alzheimer's disease (AD). We find that iMGLs develop in vitro similarly to microglia in vivo, and whole-transcriptome analysis demonstrates that they are highly similar to cultured adult and fetal human microglia. Functional assessment of iMGLs reveals that they secrete cytokines in response to inflammatory stimuli, migrate and undergo calcium transients, and robustly phagocytose CNS substrates. iMGLs were used to examine the effects of Aß fibrils and brain-derived tau oligomers on AD-related gene expression and to interrogate mechanisms involved in synaptic pruning. Furthermore, iMGLs transplanted into transgenic mice and human brain organoids resemble microglia in vivo. Together, these findings demonstrate that iMGLs can be used to study microglial function, providing important new insight into human neurological disease.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Microglia/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Fragmentos de Peptídeos/metabolismo
8.
J Neurochem ; 136 Suppl 1: 18-28, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26806371

RESUMO

Seventy-five percent of all traumatic brain injuries are mild and do not cause readily visible abnormalities on routine medical imaging making it difficult to predict which individuals will develop unwanted clinical sequelae. Microglia are brain-resident macrophages and early responders to brain insults. Their activation is associated with changes in morphology or expression of phenotypic markers including P2Y12 and major histocompatibility complex class II. Using a murine model of unrestrained mild closed head injury (mCHI), we used microglia as reporters of acute brain injury at sites of impact versus sites experiencing rotational stress 24 h post-mCHI. Consistent with mild injury, a modest 20% reduction in P2Y12 expression was detected by quantitative real-time PCR (qPCR) analysis but only in the impacted region of the cortex. Furthermore, neither an influx of blood-derived immune cells nor changes in microglial expression of CD45, TREM1, TREM2, major histocompatibility complex class II or CD40 were detected. Using magnetic resonance imaging (MRI), small reductions in T2 weighted values were observed but only near the area of impact and without overt tissue damage (blood deposition, edema). Microglial morphology was quantified without cryosectioning artifacts using ScaleA(2) clarified brains from CX3CR1-green fluorescence protein (GFP) mice. The cortex rostral to the mCHI impact site receives greater rotational stress but neither MRI nor molecular markers of microglial activation showed significant changes from shams in this region. However, microglia in this rostral region did display signs of morphologic activation equivalent to that observed in severe CHI. Thus, mCHI-triggered rotational stress is sufficient to cause injuries undetectable by routine MRI that could result in altered microglial surveillance of brain homeostasis. Acute changes in microglial morphology reveal brain responses to unrestrained mild traumatic brain injury In areas subjected to rotational stress distant from impact site In the absence of detectable changes in standard molecular indicators of brain damage, inflammation or microglial activation. That might result in decreased surveillance of brain function and increased susceptibility to subsequent brain insults.


Assuntos
Modelos Animais de Doenças , Traumatismos Cranianos Fechados/patologia , Imageamento por Ressonância Magnética/métodos , Microglia/patologia , Animais , Traumatismos Cranianos Fechados/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microscopia Confocal/métodos
10.
Lancet Neurol ; 14(4): 388-405, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25792098

RESUMO

Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia, and trigger an innate immune response characterised by release of inflammatory mediators, which contribute to disease progression and severity. Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity, are likely to interfere with immunological processes of the brain and further promote disease progression. Modulation of risk factors and targeting of these immune mechanisms could lead to future therapeutic or preventive strategies for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Anti-Inflamatórios não Esteroides/uso terapêutico , Lesões Encefálicas/complicações , Imunidade Inata , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Microglia/imunologia , Microglia/patologia , Obesidade/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Animais , Astrócitos/imunologia , Astrócitos/patologia , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Lesões Encefálicas/metabolismo , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Progressão da Doença , Humanos , Imunização , Inflamação/diagnóstico , Inflamação/imunologia , Mediadores da Inflamação/imunologia , Locus Cerúleo/patologia , Nootrópicos/administração & dosagem , Obesidade/metabolismo , Fagocitose , Dobramento de Proteína , Fatores de Risco , Índice de Gravidade de Doença
11.
Cytokine ; 72(2): 210-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25703786

RESUMO

Catecholamines and adipokines function as hormones; catecholamines as neurotransmitters in the sympathetic nervous system, and adipokines as mediators of metabolic processes. It has become increasingly clear, however, that both also function as immunomodulators of innate and adaptive immune cells, including macrophages. Macrophages can respond to, as well as produce their own catecholamines. Dopamine, noradrenaline, and adrenaline are the most abundant catecholamines in the body, and can induce both pro-inflammatory and anti-inflammatory immune responses in macrophages, as well as non-immune processes such as thermogenesis. Though they are responsive to adipokines, particularly lipoproteins, leptin, and adiponectin, macrophages generally do not synthesize their own adipokines, with the exception being resistin-like molecules. Adipokines contribute to adverse metabolic and immune responses by stimulating lipid accumulation, foam cell formation and pro-inflammatory cytokine production in macrophages. Adipokines can also promote balance or resolution during metabolic and immune processes by promoting reverse lipid transport and expression of Th2 cytokines. This review will explore the mechanisms by which catecholamines and adipokines influence macrophage function in neural pathways, immunity and metabolism.


Assuntos
Adipocinas/metabolismo , Catecolaminas/metabolismo , Sistema Nervoso Central/fisiologia , Citocinas/classificação , Macrófagos/imunologia , Macrófagos/fisiologia , Animais , Transporte Biológico , Sistema Nervoso Central/imunologia , Hormônios/metabolismo , Humanos , Lipoproteínas/metabolismo , Vias Neurais , Resistina/metabolismo , Termogênese
12.
Neurochem Int ; 63(7): 635-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24021493

RESUMO

Neurons have been the natural focus of discussion for most of the history of research on seizures and epilepsy. Simply stated, epilepsy is a disease of sporadic, progressive disruption of neuronal activity. Thus causes and therapies for epilepsy have been naturally aimed at the obvious manifestation of disease: neuronal dysfunction. However, over the last two decades a new view is beginning to emerge that is defining the dependence of neuronal function and seizure susceptibility on glia. This view changes the definition of epilepsy as a disease of neurons to a disease of a heterogeneous neuronal-glial network. This new glial focus is suggesting new opportunities to treat the nearly 1/3 of individuals who do not respond to traditional antiepileptic drug (AEDs) therapies as well as suggesting ways to reduce the many unwanted side effects of AEDs.


Assuntos
Transplante de Células , Epilepsia/terapia , Neuroglia/citologia , Humanos
13.
Methods Mol Biol ; 1013: 171-83, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23625499

RESUMO

In response to central nervous system (CNS) injury and infection, astrocytes, neurons, and CNS vasculature express several chemokines, including CCL21. Quantitative polymerase chain reaction (qPCR), western blot, and immunohistochemical methods can quantify mRNA and protein expression. However, these methods do not quantify chemokine bioavailability and bioactivity, variables modified by many environmental factors including composition of the extracellular matrix (ECM). Here we illustrate how two-photon microscopy and carboxyfluorescein succinimidyl ester (CFSE or CFDA SE) labeling of T cells coupled with flow cytometry can be used as tools to assess chemokine-mediated regulation of T cell proliferation, activation, and migration.


Assuntos
Encéfalo/metabolismo , Rastreamento de Células , Infecções do Sistema Nervoso Central/metabolismo , Quimiocinas/metabolismo , Quimiotaxia , Ativação Linfocitária , Linfócitos T/metabolismo , Animais , Encéfalo/imunologia , Proliferação de Células , Rastreamento de Células/métodos , Infecções do Sistema Nervoso Central/imunologia , Quimiocina CCL21/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Transdução de Sinais , Succinimidas/metabolismo , Linfócitos T/imunologia , Linfócitos T/transplante , Fatores de Tempo
14.
J Neurosci ; 32(1): 133-42, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22219276

RESUMO

Huntington's disease (HD) is caused by an expanded polyglutamine tract in the protein huntingtin (htt). Although HD has historically been viewed as a brain-specific disease, htt is expressed ubiquitously, and recent studies indicate that mutant htt might cause changes to the immune system that could contribute to pathogenesis. Monocytes from HD patients and mouse models are hyperactive in response to stimulation, and increased levels of inflammatory cytokines and chemokines are found in pre-manifest patients that correlate with pathogenesis. In this study, wild-type (WT) bone marrow cells were transplanted into two lethally irradiated transgenic mouse models of HD that ubiquitously express full-length htt (YAC128 and BACHD mice). Bone marrow transplantation partially attenuated hypokinetic and motor deficits in HD mice. Increased levels of synapses in the cortex were found in HD mice that received bone marrow transplants. Importantly, serum levels of interleukin-6, interleukin-10, CXC chemokine ligand 1, and interferon-γ were significantly higher in HD than WT mice but were normalized in mice that received a bone marrow transplant. These results suggest that immune cell dysfunction might be an important modifier of pathogenesis in HD.


Assuntos
Doenças Autoimunes do Sistema Nervoso/terapia , Células da Medula Óssea/imunologia , Transplante de Medula Óssea/métodos , Doença de Huntington/imunologia , Doença de Huntington/terapia , Terapia de Imunossupressão/métodos , Animais , Doenças Autoimunes do Sistema Nervoso/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Doença de Huntington/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
15.
Neuroimage Clin ; 1(1): 18-28, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24179733

RESUMO

Mild traumatic brain injury (mTBI) has become an increasing public health concern as subsequent injuries can exacerbate existing neuropathology and result in neurological deficits. This study investigated the temporal development of cortical lesions using magnetic resonance imaging (MRI) to assess two mTBIs delivered to opposite cortical hemispheres. The controlled cortical impact model was used to produce an initial mTBI on the right cortex followed by a second injury induced on the left cortex at 3 (rmTBI 3d) or 7 (rmTBI 7d) days later. Histogram analysis was combined with a novel semi-automated computational approach to perform a voxel-wise examination of extravascular blood and edema volumes within the lesion. Examination of lesion volume 1d post last injury revealed increased tissue abnormalities within rmTBI 7d animals compared to other groups, particularly at the site of the second impact. Histogram analysis of lesion T2 values suggested increased edematous tissue within the rmTBI 3d group and elevated blood deposition in the rm TBI 7d animals. Further quantification of lesion composition for blood and edema containing voxels supported our histogram findings, with increased edema at the site of second impact in rmTBI 3d animals and elevated blood deposition in the rmTBI 7d group at the site of the first injury. Histological measurements revealed spatial overlap of regions containing blood deposition and microglial activation within the cortices of all animals. In conclusion, our findings suggest that there is a window of tissue vulnerability where a second distant mTBI, induced 7d after an initial injury, exacerbates tissue abnormalities consistent with hemorrhagic progression.

16.
Brain Behav Immun ; 25(4): 629-39, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21237263

RESUMO

Increased polyamine production is observed in a variety of chronic neuroinflammatory disorders, but in vitro and in vivo studies yield conflicting data on the immunomodulatory consequences of their production. Ornithine decarboxylase (ODC) is the rate-limiting enzyme in endogenous polyamine production. To identify the role of polyamine production in CNS-intrinsic inflammatory responses, we defined CNS sites of ODC expression and the consequences of inhibiting ODC in response to intracerebral injection of LPS±IFNγ. In situ hybridization analysis revealed that both neurons and non-neuronal cells rapidly respond to LPS±IFNγ by increasing ODC expression. Inhibiting ODC by co-injecting DFMO decreased LPS-induced CCL2 expression and macrophage influx into the CNS, without altering LPS-induced microglial or macrophage activation. Conversely, intracerebral injection of polyamines was sufficient to trigger macrophage influx into the CNS of wild-type but not CCL2KO mice, demonstrating the dependence of macrophage influx on CNS expression of CCL2. Consistent with these data, addition of putrescine and spermine to mixed glial cultures dramatically increased CCL2 expression and to a much lesser extent, TNF expression. Addition of all three polyamines to mixed glial cultures also decreased the numbers and percentages of oligodendrocytes present. However, in vivo, inhibiting the basal levels of polyamine production was sufficient to induce expression of apolipoprotein D, a marker of oxidative stress, within white matter tracts. Considered together, our data indicate that: (1) CNS-resident cells including neurons play active roles in recruiting pro-inflammatory TREM1-positive macrophages into the CNS via polyamine-dependent induction of CCL2 expression and (2) modulating polyamine production in vivo may be a difficult strategy to limit inflammation and promote repair due to the dual homeostatic and pro-inflammatory roles played by polyamines.


Assuntos
Quimiocina CCL2/metabolismo , Macrófagos/imunologia , Glicoproteínas de Membrana/metabolismo , Ornitina Descarboxilase/metabolismo , Putrescina/metabolismo , Receptores Imunológicos/metabolismo , Animais , Células Cultivadas , Sistema Nervoso Central/citologia , Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/metabolismo , Quimiocina CCL2/genética , Injeções Intraventriculares , Interferon gama/administração & dosagem , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/metabolismo , Neurônios/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides
17.
Brain Behav Immun ; 25(5): 883-96, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20868739

RESUMO

Injury, infection and autoimmune triggers increase CNS expression of the chemokine CCL21. Outside the CNS, CCL21 contributes to chronic inflammatory disease and autoimmunity by three mechanisms: recruitment of lymphocytes into injured or infected tissues, organization of inflammatory infiltrates into lymphoid-like structures and promotion of homeostatic CD4+ T-cell proliferation. To test if CCL21 plays the same role in CNS inflammation, we generated transgenic mice with astrocyte-driven expression of CCL21 (GFAP-CCL21 mice). Astrocyte-produced CCL21 was bioavailable and sufficient to support homeostatic CD4+ T-cell proliferation in cervical lymph nodes even in the absence of endogenous CCL19/CCL21. However, lymphocytes and glial-activation were not detected in the brains of uninfected GFAP-CCL21 mice, although CCL21 levels in GFAP-CCL21 brains were higher than levels expressed in inflamed Toxoplasma-infected non-transgenic brains. Following Toxoplasma infection, T-cell extravasation into submeningeal, perivascular and ventricular sites of infected CNS was not CCL21-dependent, occurring even in CCL19/CCL21-deficient mice. However, migration of extravasated CD4+, but not CD8+ T cells from extra-parenchymal CNS sites into the CNS parenchyma was CCL21-dependent. CD4+ T cells preferentially accumulated at perivascular, submeningeal and ventricular spaces in infected CCL21/CCL19-deficient mice. By contrast, greater numbers of CD4+ T cells infiltrated the parenchyma of infected GFAP-CCL21 mice than in wild-type or CCL19/CCL21-deficient mice. Together these data indicate that CCL21 expression within the CNS has the potential to contribute to T cell-mediated CNS pathology via: (a) homeostatic priming of CD4+ T-lymphocytes outside the CNS and (b) by facilitating CD4+ T-cell migration into parenchymal sites following pathogenic insults to the CNS.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Quimiocina CCL21/fisiologia , Toxoplasma/imunologia , Toxoplasmose Cerebral/imunologia , Animais , Astrócitos/imunologia , Astrócitos/parasitologia , Northern Blotting , Encéfalo/imunologia , Encéfalo/parasitologia , Linfócitos T CD4-Positivos/fisiologia , Quimiotaxia de Leucócito/imunologia , Quimiotaxia de Leucócito/fisiologia , Hibridização In Situ , Ativação Linfocitária/imunologia , Ativação Linfocitária/fisiologia , Camundongos , Camundongos Transgênicos , Microglia/imunologia , Microglia/parasitologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
ASN Neuro ; 2(3): e00037, 2010 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-20640189

RESUMO

Vaccine-based autoimmune (anti-amyloid) treatments are currently being examined for their therapeutic potential in Alzheimer's disease. In the present study we examined, in a transgenic model of amyloid pathology, the expression of two molecules previously implicated in decreasing the severity of autoimmune responses: TREM2 (triggering receptor expressed on myeloid cells 2) and the intracellular tolerance-associated transcript, Tmem176b (transmembrane domain protein 176b). In situ hybridization analysis revealed that both molecules were highly expressed in plaque-associated microglia, but their expression defined two different zones of plaque-associated activation. Tmem176b expression was highest in the inner zone of amyloid plaques, whereas TREM2 expression was highest in the outer zone. Induced expression of TREM2 occurred co-incident with detection of thioflavine-S-positive amyloid deposits. Transfection studies revealed that expression of TREM2 correlated negatively with motility, but correlated positively with the ability of microglia to stimulate CD4(+) T-cell proliferation, TNF (tumour necrosis factor) and CCL2 (chemokine ligand 2) production, but not IFNgamma (interferon gamma) production. TREM2 expression also showed a positive correlation with amyloid phagocytosis in unactivated cells. However, activating cells with LPS (lipopolysaccharide), but not IFNgamma, reduced the correlation between TREM2 expression and phagocytosis. Transfection of Tmem176b into both microglial and macrophage cell lines increased apoptosis. Taken together, these data suggest that, in vivo, Tmem176b(+) cells in closest apposition to amyloid may be the least able to clear amyloid. Conversely, the phagocytic TREM2(+) microglia on the plaque outer zones are positioned to capture and present self-antigens to CNS (central nervous system)-infiltrating lymphocytes without promoting pro-inflammatory lymphocyte responses. Instead, plaque-associated TREM2(+) microglia have the potential to evoke neuroprotective immune responses that may serve to support CNS function during pro-inflammatory anti-amyloid immune therapies.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/prevenção & controle , Amiloide/genética , Amiloide/metabolismo , Imunoterapia Ativa , Glicoproteínas de Membrana/biossíntese , Receptores Imunológicos/biossíntese , Doença de Alzheimer/metabolismo , Amiloide/fisiologia , Animais , Linhagem Celular Transformada , Células Cultivadas , Regulação da Expressão Gênica/imunologia , Humanos , Imunoterapia Ativa/métodos , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fagocitose/fisiologia , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Receptores Imunológicos/genética , Receptor Gatilho 1 Expresso em Células Mieloides
19.
J Gen Physiol ; 135(4): 333-53, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20231374

RESUMO

We investigated the properties and regulation of P2X receptors in immortalized C8-B4 cells of cerebellar microglial origin. Resting C8-B4 cells expressed virtually no functional P2X receptors, but largely increased functional expression of P2X4 receptors within 2-6 h of entering the activated state. Using real-time polymerase chain reaction, we found that P2X4 transcripts were increased during the activated state by 2.4-fold, but this increase was not reflected by a parallel increase in total P2X4 proteins. In resting C8-B4 cells, P2X4 subunits were mainly localized within intracellular compartments, including lysosomes. We found that cell surface P2X4 receptor levels increased by approximately 3.5-fold during the activated state. This change was accompanied by a decrease in the lysosomal pool of P2X4 proteins. We next exploited our findings with C8-B4 cells to investigate the mechanism by which antidepressants reduce P2X4 responses. We found little evidence to suggest that several antidepressants were antagonists of P2X4 receptors in C8-B4 cells. However, we found that moderate concentrations of the same antidepressants reduced P2X4 responses in activated microglia by affecting lysosomal function, which indirectly reduced cell surface P2X4 levels. In summary, our data suggest that activated C8-B4 cells express P2X4 receptors when the membrane insertion of these proteins by lysosomal secretion exceeds their removal, and that antidepressants indirectly reduce P2X4 responses by interfering with lysosomal trafficking.


Assuntos
Antidepressivos/administração & dosagem , Cerebelo/metabolismo , Neuroglia/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Linhagem Celular , Cerebelo/efeitos dos fármacos , Camundongos , Neuroglia/efeitos dos fármacos , Receptores Purinérgicos P2/efeitos dos fármacos , Receptores Purinérgicos P2X4
20.
Infect Immun ; 78(5): 2257-63, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20194594

RESUMO

The chemokine receptor CCR7 is a well-established homing receptor for dendritic cells and T cells. Interactions with its ligands, CCL19 and CCL21, facilitate priming of immune responses in lymphoid tissue, yet CCR7-independent immune responses can be generated in the presence of sufficient antigen. In these studies, we investigated the role of CCR7 signaling in the generation of protective immune responses to the intracellular protozoan parasite Toxoplasma gondii. The results demonstrated a significant increase in the expression of CCL19, CCL21, and CCR7 in peripheral and central nervous system (CNS) tissues over the course of infection. Unexpectedly, despite the presence of abundant antigen, CCR7 was an absolute requirement for protective immunity to T. gondii, as CCR7(-/-) mice succumbed to the parasite early in the acute phase of infection. Although serum levels of interleukin 12 (IL-12), IL-6, tumor necrosis factor alpha (TNF-alpha), and IL-10 remained unchanged, there was a significant decrease in CCL2/monocyte chemoattractant protein 1 (MCP-1) and inflammatory monocyte recruitment to the site of infection. In addition, CCR7(-/-) mice failed to produce sufficient gamma interferon (IFN-gamma), a critical Th1-associated effector cytokine required to control parasite replication. As a result, there was increased parasite dissemination and a significant increase in parasite burden in the lungs, livers, and brains of infected mice. Adoptive-transfer experiments revealed that expression of CCR7 on the T-cell compartment alone is sufficient to enable T-cell priming, increase IFN-gamma production, and allow the survival of CCR7(-/-) mice. These data demonstrate an absolute requirement for T-cell expression of CCR7 for the generation of protective immune responses to Toxoplasma infection.


Assuntos
Receptores CCR7/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Transferência Adotiva , Animais , Encéfalo/parasitologia , Quimiocina CCL19/biossíntese , Quimiocina CCL2/metabolismo , Quimiocina CCL21/biossíntese , Perfilação da Expressão Gênica , Interferon gama/metabolismo , Fígado/parasitologia , Pulmão/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR7/biossíntese , Receptores CCR7/deficiência , Análise de Sobrevida , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...