Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(35): e2406005121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39172786

RESUMO

Dynamic brain immune function in individuals with posttraumatic stress disorder is rarely studied, despite evidence of peripheral immune dysfunction. Positron emission tomography brain imaging using the radiotracer [11C]PBR28 was used to measure the 18-kDa translocator protein (TSPO), a microglial marker, at baseline and 3 h after administration of lipopolysaccharide (LPS), a potent immune activator. Data were acquired in 15 individuals with PTSD and 15 age-matched controls. The PTSD group exhibited a significantly lower magnitude LPS-induced increase in TSPO availability in an a priori prefrontal-limbic circuit compared to controls. Greater anhedonic symptoms in the PTSD group were associated with a more suppressed neuroimmune response. In addition, while a reduced granulocyte-macrophage colony-stimulating factor response to LPS was observed in the PTSD group, other measured cytokine responses and self-reported sickness symptoms did not differ between groups; these findings highlight group differences in central-peripheral immune system relationships. The results of this study provide evidence of a suppressed microglia-mediated neuroimmune response to a direct immune system insult in individuals with PTSD that is associated with the severity of symptoms. They also provide further support to an emerging literature challenging traditional concepts of microglial and immune function in psychiatric disease.


Assuntos
Anedonia , Microglia , Tomografia por Emissão de Pósitrons , Receptores de GABA , Transtornos de Estresse Pós-Traumáticos , Transtornos de Estresse Pós-Traumáticos/imunologia , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/metabolismo , Humanos , Microglia/imunologia , Microglia/metabolismo , Masculino , Adulto , Tomografia por Emissão de Pósitrons/métodos , Feminino , Receptores de GABA/metabolismo , Lipopolissacarídeos , Pessoa de Meia-Idade , Neuroimunomodulação/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/imunologia , Encéfalo/metabolismo
2.
J Physiol ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129269

RESUMO

It is a paradox of neurological rehabilitation that, in an era in which preclinical models have produced significant advances in our mechanistic understanding of neural plasticity, there is inadequate support for many therapies recommended for use in clinical practice. When the goal is to estimate the probability that a specific form of therapy will have a positive clinical effect, the integration of mechanistic knowledge (concerning 'the structure or way of working of the parts in a natural system') may improve the quality of inference. This is illustrated by analysis of three contemporary approaches to the rehabilitation of lateralized dysfunction affecting people living with stroke: constraint-induced movement therapy; mental practice; and mirror therapy. Damage to 'cross-road' regions of the structural (white matter) brain connectome generates deficits that span multiple domains (motor, language, attention and verbal/spatial memory). The structural integrity of these regions determines not only the initial functional status, but also the response to therapy. As structural disconnection constrains the recovery of functional capability, 'disconnectome' modelling provides a basis for personalized prognosis and precision rehabilitation. It is now feasible to refer a lesion delineated using a standard clinical scan to a (dis)connectivity atlas derived from the brains of other stroke survivors. As the individual disconnection pattern thus obtained suggests the functional domains most likely be compromised, a therapeutic regimen can be tailored accordingly. Stroke is a complex disorder that burdens individuals with distinct constellations of brain damage. Mechanistic knowledge is indispensable when seeking to ameliorate the behavioural impairments to which such damage gives rise.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39155309

RESUMO

PURPOSE: [18F]SynVesT-1, a positron emission tomography (PET) radiotracer for the synaptic vesicle glycoprotein 2A (SV2A), demonstrates kinetics similar to [11C]UCB-J, with high brain uptake, fast kinetics fitting well with the one-tissue compartment (1TC) model, and excellent test-retest reproducibility. Challenges arise due to the similarity between k2 and [Formula: see text] (efflux rate of the reference region), when applying the simplified reference tissue model (SRTM) and related methods in [11C]UCB-J studies to accurately estimate [Formula: see text]. This study evaluated the suitability of these methods to estimate [18F]SynVesT-1 binding using centrum semiovale (CS) or cerebellum (CER) as reference regions. METHOD: Seven healthy participants underwent 120-min PET scans on the HRRT scanner with [18F]SynVesT-1. Six participants underwent test and retest scans. Arterial blood sampling and metabolite analysis provided input functions for the 1TC model, serving as the gold standard for kinetic parameters values. SRTM, coupled SRTM (SRTMC) and SRTM2 estimated were applied to estimate [Formula: see text](ref: CS) and DVRCER(ref: CER) values. For SRTM2, the population average of [Formula: see text] was determined from the 1TC model applied to the reference region. Test-retest variability and minimum scan time were also calculated. RESULTS: The 1TC k2 (1/min) values for CS and CER were 0.031 ± 0.004 and 0.021 ± 0.002, respectively. Although SRTMC [Formula: see text] was much higher than 1TC [Formula: see text], SRTMC underestimated BPND(ref: CS) and DVRCER by an average of 3% and 1% across regions, respectively, due to similar bias in k2 and [Formula: see text] estimation. SRTM underestimated BPND(ref: CS) by an average of 3%, but with the CER as reference region, SRTM estimation was unstable and DVRCER underestimation varied by region (mean 10%). Using population average [Formula: see text] values, SRTM2 BPND and DVRCER showed the best agreement with 1TC estimates. CONCLUSION: Our findings support the use of population [Formula: see text] value in SRTM2 with [18F]SynVesT-1 for the estimation of [Formula: see text] or DVRCER, regardless of the choice of reference region.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39039139

RESUMO

The development of novel radiotracers for Positron Emission Tomography (PET) imaging agents targeting the synaptic vesicle glycoprotein 2 A (SV2A), an integral glycoprotein present in the membrane of all synaptic vesicles throughout the central nervous system, provides a method for the in vivo quantification of synaptic density. This is of particular interest in neuropsychiatric disorders given that synaptic alterations appear to underlie disease progression and symptom severity. In this review, we briefly describe the development of these SV2A tracers and the evaluation of quantification methods. Next, we discuss application of SV2A PET imaging to the study of depression, including a review of our findings demonstrating lower SV2A synaptic density in people with significant depressive symptoms and the use of a ketamine drug challenge to examine synaptogenesis in vivo. We then highlight the importance of performing translational PET imaging in animal models in conjunction with clinical imaging. We consider the ongoing challenges, possible solutions, and present preliminary findings from our lab demonstrating the translational benefit and potential of in vivo SV2A imaging in animal models of chronic stress. Finally, we discuss methodological improvements and future directions for SV2A imaging, potentially in conjunction with other neural markers.

5.
J Electromyogr Kinesiol ; : 102910, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-39069427

RESUMO

Skeletal muscles power movement. Deriving the forces produced by individual muscles has applications across various fields including biomechanics, robotics, and rehabilitation. Since direct in vivo measurement of muscle force in humans is invasive and challenging, its estimation through non-invasive methods such as electromyography (EMG) holds considerable appeal. This matrix, developed by the Consensus for Experimental Design in Electromyography (CEDE) project, summarizes recommendations on the use of EMG to estimate muscle force. The matrix encompasses the use of bipolar surface EMG, high density surface EMG, and intra-muscular EMG (1) to identify the onset of muscle force during isometric contractions, (2) to identify the offset of muscle force during isometric contractions, (3) to identify force fluctuations during isometric contractions, (4) to estimate force during dynamic contractions, and (5) in combination with musculoskeletal models to estimate force during dynamic contractions. For each application, recommendations on the appropriateness of using EMG to estimate force and justification for each recommendation are provided. The achieved consensus makes clear that there are limited scenarios in which EMG can be used to accurately estimate muscle forces. In most cases, it remains important to consider the activation as well as the muscle state and other biomechanical and physiological factors- such as in the context of a formal mechanical model. This matrix is intended to encourage interdisciplinary discussions regarding the integration of EMG with other experimental techniques and to promote advances in the application of EMG towards developing muscle models and musculoskeletal simulations that can accurately predict muscle forces in healthy and clinical populations.

6.
J Nucl Med ; 65(8): 1320-1326, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38871391

RESUMO

The collaboration of Yale, the University of California, Davis, and United Imaging Healthcare has successfully developed the NeuroEXPLORER, a dedicated human brain PET imager with high spatial resolution, high sensitivity, and a built-in 3-dimensional camera for markerless continuous motion tracking. It has high depth-of-interaction and time-of-flight resolutions, along with a 52.4-cm transverse field of view (FOV) and an extended axial FOV (49.5 cm) to enhance sensitivity. Here, we present the physical characterization, performance evaluation, and first human images of the NeuroEXPLORER. Methods: Measurements of spatial resolution, sensitivity, count rate performance, energy and timing resolution, and image quality were performed adhering to the National Electrical Manufacturers Association (NEMA) NU 2-2018 standard. The system's performance was demonstrated through imaging studies of the Hoffman 3-dimensional brain phantom and the mini-Derenzo phantom. Initial 18F-FDG images from a healthy volunteer are presented. Results: With filtered backprojection reconstruction, the radial and tangential spatial resolutions (full width at half maximum) averaged 1.64, 2.06, and 2.51 mm, with axial resolutions of 2.73, 2.89, and 2.93 mm for radial offsets of 1, 10, and 20 cm, respectively. The average time-of-flight resolution was 236 ps, and the energy resolution was 10.5%. NEMA sensitivities were 46.0 and 47.6 kcps/MBq at the center and 10-cm offset, respectively. A sensitivity of 11.8% was achieved at the FOV center. The peak noise-equivalent count rate was 1.31 Mcps at 58.0 kBq/mL, and the scatter fraction at 5.3 kBq/mL was 36.5%. The maximum count rate error at the peak noise-equivalent count rate was less than 5%. At 3 iterations, the NEMA image-quality contrast recovery coefficients varied from 74.5% (10-mm sphere) to 92.6% (37-mm sphere), and background variability ranged from 3.1% to 1.4% at a contrast of 4.0:1. An example human brain 18F-FDG image exhibited very high resolution, capturing intricate details in the cortex and subcortical structures. Conclusion: The NeuroEXPLORER offers high sensitivity and high spatial resolution. With its long axial length, it also enables high-quality spinal cord imaging and image-derived input functions from the carotid arteries. These performance enhancements will substantially broaden the range of human brain PET paradigms, protocols, and thereby clinical research applications.


Assuntos
Encéfalo , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/instrumentação , Processamento de Imagem Assistida por Computador , Fluordesoxiglucose F18
7.
J Affect Disord ; 361: 415-424, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38876317

RESUMO

BACKGROUND: Elucidating biological mechanisms contributing to bipolar disorder (BD) is key to improved diagnosis and treatment development. With converging evidence implicating the metabotropic glutamate receptor 5 (mGlu5) in the pathology of BD, here, we therefore test the hypothesis that recently identified deficits in mGlu5 are associated with functional brain differences during emotion processing in BD. METHODS: Positron emission tomography (PET) with [18F]FPEB was used to measure mGlu5 receptor availability and functional imaging (fMRI) was performed while participants completed an emotion processing task. Data were analyzed from 62 individuals (33 ± 12 years, 45 % female) who completed both PET and fMRI, including individuals with BD (n = 18), major depressive disorder (MDD: n = 20), and psychiatrically healthy comparisons (HC: n = 25). RESULTS: Consistent with some prior reports, the BD group displayed greater activation during fear processing relative to MDD and HC, notably in right lateralized frontal and parietal brain regions. In BD, (but not MDD or HC) lower prefrontal mGlu5 availability was associated with greater activation in bilateral pre/postcentral gyri and cuneus during fear processing. Furthermore, greater prefrontal mGlu5-related brain activity in BD was associated with difficulties in psychomotor function (r≥0.904, p≤0.005) and attention (r≥0.809, p≤0.028). LIMITATIONS: The modest sample size is the primary limitation. CONCLUSIONS: Deficits in prefrontal mGlu5 in BD were linked to increased cortical activation during fear processing, which in turn was associated with impulsivity and attentional difficulties. These data further implicate an mGlu5-related mechanism unique to BD. More generally these data suggest integrating PET and fMRI can provide novel mechanistic insights.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Emoções , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Córtex Pré-Frontal , Receptor de Glutamato Metabotrópico 5 , Humanos , Feminino , Transtorno Bipolar/fisiopatologia , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Masculino , Adulto , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/metabolismo , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/metabolismo , Emoções/fisiologia , Pessoa de Meia-Idade , Adulto Jovem , Medo/fisiologia
8.
Res Sq ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38854065

RESUMO

Purpose: The sphingosine-1-phosphate receptor-1 (S1PR1) is involved in regulating responses to neuroimmune stimuli. There is a need for S1PR1-specific radioligands with clinically suitable brain pharmcokinetic properties to complement existing radiotracers. This work evaluated a promising S1PR1 radiotracer, [18F]TZ4877, in nonhuman primates. Procedures: [18F]TZ4877 was produced via nucleophilic substitution of tosylate precursor with K[18F]/F- followed by deprotection. Brain PET imaging data were acquired with a Focus220 scanner in two Macaca mulatta (6, 13 years old) for 120-180 min following bolus injection of 118-163 MBq [18F]TZ4877, with arterial blood sampling and metabolite analysis to measure the parent input function and plasma free fraction (f P). Each animal was scanned at baseline, 15-18 min after 0.047-0.063 mg/kg of the S1PR1 inhibitor ponesimod, 33 min after 0.4-0.8 mg/kg of the S1PR1-specific compound TZ82112, and 167-195 min after 1 ng/kg of the immune stimulus endotoxin. Kinetic analysis with metabolite-corrected input function was performed to estimate the free fraction corrected total distribution volume (V T/f P). Whole-body dosimetry scans were acquired in 2 animals (1M, 1F) with a Biograph Vision PET/CT System, and absorbed radiation dose estimates were calculated with OLINDA. Results: [18F]TZ4877 exhibited fast kinetics that were described by the reversible 2-tissue compartment model. Baseline [18F]TZ4877 f P was low (< 1%), and [18F]TZ4877 V T/f P values were 233-866 mL/cm3. TZ82112 dose-dependently reduced [18F]TZ4877 V T/f P, while ponesimod and endotoxin exhibited negligible effects on V T/f P, possibly due to scan timing relative to dosing. Dosimetry studies identified the critical organs of gallbladder (0.42 (M) and 0.31 (F) mSv/MBq) for anesthetized nonhuman primate. Conclusions: [18F]TZ4877 exhibits reversible kinetic properties, but the low f P value limits quantification with this radiotracer. S1PR1 is a compelling PET imaging target, and these data support pursuing alternative F-18 labeled radiotracers for potential future human studies.

9.
Clin Neurophysiol Pract ; 9: 120-129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595691

RESUMO

Objective: To establish if induced current direction across the motor cortex alters the sensitivity of transcranial magnetic stimulation (TMS)-evoked short-interval intracortical inhibition (SICI) as an ALS biomarker. Methods: Threshold tracking-TMS was undertaken in 35 people with ALS and 39 controls. Using a coil orientation which induces posterior-anterior (PA)-directed current across the motor cortex, SICI (1 ms and 3 ms interstimulus intervals) and intracortical facilitation (ICF, 10 ms interstimulus interval) were recorded. SICI3ms was also recorded using a coil orientation which induces anterior-posterior (AP)-directed current across the motor cortex. Results: At group level, SICI3ms-PA (AUROC = 0.7), SICI3ms-AP (AUROC = 0.8) and SICI1ms (AUROC = 0.66) were substantially lower in those with ALS, although there was considerable interindividual heterogeneity. Averaging across interstimulus intervals (ISIs) marginally improved SICIPA sensitivity (AUROC = 0.76). Averaging SICI values across ISIs and orientations into a single SICI measure did not substantially improve sensitivity (AUROC = 0.81) compared to SICI3ms-AP alone. SICI3ms-AP and SICI3ms-PA did not significantly correlate (rho = 0.19, p = 0.313), while SICI1ms-PA and SICI3ms-PA did (rho = 0.37, p = 0.006). Further, those with ALS with the lowest SICI3ms-PA were not those with the lowest SICI3ms-AP. ICF was similar between groups (AUROC = 0.50). Conclusions: SICIPA and SICIAP are uncorrelated measures of motor cortical inhibitory functions which are useful as distinct, unequally affected, measures of disinhibition in ALS. Significance: Examining both SICIPA and SICIAP may facilitate more comprehensive characterisation of motor cortical disinhibition in ALS.

10.
Aging Clin Exp Res ; 36(1): 87, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578525

RESUMO

BACKGROUND: The multifinger force deficit (MFFD) is the decline in force generated by each finger as the number of fingers contributing to an action is increased. It has been shown to associate with cognitive status. AIMS: The aim was to establish whether a particularly challenging form of multifinger grip dynamometry, that provides minimal tactile feedback via cutaneous receptors and requires active compensation for reaction forces, will yield an MFFD that is more sensitive to cognitive status. METHODS: Associations between measures of motor function, and cognitive status (Montreal Cognitive Assessment [MoCA]) and latent components of cognitive function (derived from 11 tests using principal component analysis), were estimated cross-sectionally using generalized partial rank correlations. The participants (n = 62) were community dwelling, aged 65-87. RESULTS: Approximately half the participants were unable to complete the dynamometry task successfully. Cognitive status demarcated individuals who could perform the task from those who could not. Among those who complied with the task requirements, the MFFD was negatively correlated with MoCA scores-those with the highest MoCA scores tended to exhibit the smallest deficits, and vice versa. There were corresponding associations with latent components of cognitive function. DISCUSSION: The results support the view that neurodegenerative processes that are a feature of normal and pathological aging exert corresponding effects on expressions of motor coordination-in multifinger tasks, and cognitive sufficiency, due to their dependence on shared neural systems. CONCLUSIONS: The outcomes add weight to the assertion that deficits in force production during multifinger tasks are sensitive to cognitive dysfunction.


Assuntos
Disfunção Cognitiva , Força da Mão , Humanos , Força da Mão/fisiologia , Envelhecimento , Dedos/fisiologia , Análise de Componente Principal
11.
Med Image Anal ; 95: 103180, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657423

RESUMO

The high noise level of dynamic Positron Emission Tomography (PET) images degrades the quality of parametric images. In this study, we aim to improve the quality and quantitative accuracy of Ki images by utilizing deep learning techniques to reduce the noise in dynamic PET images. We propose a novel denoising technique, Population-based Deep Image Prior (PDIP), which integrates population-based prior information into the optimization process of Deep Image Prior (DIP). Specifically, the population-based prior image is generated from a supervised denoising model that is trained on a prompts-matched static PET dataset comprising 100 clinical studies. The 3D U-Net architecture is employed for both the supervised model and the following DIP optimization process. We evaluated the efficacy of PDIP for noise reduction in 25%-count and 100%-count dynamic PET images from 23 patients by comparing with two other baseline techniques: the Prompts-matched Supervised model (PS) and a conditional DIP (CDIP) model that employs the mean static PET image as the prior. Both the PS and CDIP models show effective noise reduction but result in smoothing and removal of small lesions. In addition, the utilization of a single static image as the prior in the CDIP model also introduces a similar tracer distribution to the denoised dynamic frames, leading to lower Ki in general as well as incorrect Ki in the descending aorta. By contrast, as the proposed PDIP model utilizes intrinsic image features from the dynamic dataset and a large clinical static dataset, it not only achieves comparable noise reduction as the supervised and CDIP models but also improves lesion Ki predictions.


Assuntos
Aprendizado Profundo , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Razão Sinal-Ruído , Processamento de Imagem Assistida por Computador/métodos
12.
Brain Commun ; 6(2): fcae107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601916

RESUMO

Synaptic loss is a primary pathology in Alzheimer's disease and correlates best with cognitive impairment as found in post-mortem studies. Previously, we observed in vivo reductions of synaptic density with [11C]UCB-J PET (radiotracer for synaptic vesicle protein 2A) throughout the neocortex and medial temporal brain regions in early Alzheimer's disease. In this study, we applied independent component analysis to synaptic vesicle protein 2A-PET data to identify brain networks associated with cognitive deficits in Alzheimer's disease in a blinded data-driven manner. [11C]UCB-J binding to synaptic vesicle protein 2A was measured in 38 Alzheimer's disease (24 mild Alzheimer's disease dementia and 14 mild cognitive impairment) and 19 cognitively normal participants. [11C]UCB-J distribution volume ratio values were calculated with a whole cerebellum reference region. Principal components analysis was first used to extract 18 independent components to which independent component analysis was then applied. Subject loading weights per pattern were compared between groups using Kruskal-Wallis tests. Spearman's rank correlations were used to assess relationships between loading weights and measures of cognitive and functional performance: Logical Memory II, Rey Auditory Verbal Learning Test-long delay, Clinical Dementia Rating sum of boxes and Mini-Mental State Examination. We observed significant differences in loading weights among cognitively normal, mild cognitive impairment and mild Alzheimer's disease dementia groups in 5 of the 18 independent components, as determined by Kruskal-Wallis tests. Only Patterns 1 and 2 demonstrated significant differences in group loading weights after correction for multiple comparisons. Excluding the cognitively normal group, we observed significant correlations between the loading weights for Pattern 1 (left temporal cortex and the cingulate gyrus) and Clinical Dementia Rating sum of boxes (r = -0.54, P = 0.0019), Mini-Mental State Examination (r = 0.48, P = 0.0055) and Logical Memory II score (r = 0.44, P = 0.013). For Pattern 2 (temporal cortices), significant associations were demonstrated between its loading weights and Logical Memory II score (r = 0.34, P = 0.0384). Following false discovery rate correction, only the relationship between the Pattern 1 loading weights with Clinical Dementia Rating sum of boxes (r = -0.54, P = 0.0019) and Mini-Mental State Examination (r = 0.48, P = 0.0055) remained statistically significant. We demonstrated that independent component analysis could define coherent spatial patterns of synaptic density. Furthermore, commonly used measures of cognitive performance correlated significantly with loading weights for two patterns within only the mild cognitive impairment/mild Alzheimer's disease dementia group. This study leverages data-centric approaches to augment the conventional region-of-interest-based methods, revealing distinct patterns that differentiate between mild cognitive impairment and mild Alzheimer's disease dementia, marking a significant advancement in the field.

14.
J Electromyogr Kinesiol ; 76: 102874, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547715

RESUMO

The diversity in electromyography (EMG) techniques and their reporting present significant challenges across multiple disciplines in research and clinical practice, where EMG is commonly used. To address these challenges and augment the reproducibility and interpretation of studies using EMG, the Consensus for Experimental Design in Electromyography (CEDE) project has developed a checklist (CEDE-Check) to assist researchers to thoroughly report their EMG methodologies. Development involved a multi-stage Delphi process with seventeen EMG experts from various disciplines. After two rounds, consensus was achieved. The final CEDE-Check consists of forty items that address four critical areas that demand precise reporting when EMG is employed: the task investigated, electrode placement, recording electrode characteristics, and acquisition and pre-processing of EMG signals. This checklist aims to guide researchers to accurately report and critically appraise EMG studies, thereby promoting a standardised critical evaluation, and greater scientific rigor in research that uses EMG signals. This approach not only aims to facilitate interpretation of study results and comparisons between studies, but it is also expected to contribute to advancing research quality and facilitate clinical and other practical applications of knowledge generated through the use of EMG.


Assuntos
Lista de Checagem , Consenso , Técnica Delphi , Eletromiografia , Projetos de Pesquisa , Eletromiografia/métodos , Eletromiografia/normas , Lista de Checagem/normas , Humanos , Projetos de Pesquisa/normas , Reprodutibilidade dos Testes
15.
NPJ Parkinsons Dis ; 10(1): 42, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402233

RESUMO

Parkinson's disease (PD) is the fastest growing neurodegenerative disease, but at present there is no cure, nor any disease-modifying treatments. Synaptic biomarkers from in vivo imaging have shown promise in imaging loss of synapses in PD and other neurodegenerative disorders. Here, we provide new clinical insights from a cross-sectional, high-resolution positron emission tomography (PET) study of 30 PD individuals and 30 age- and sex-matched healthy controls (HC) with the radiotracer [11C]UCB-J, which binds to synaptic vesicle glycoprotein 2A (SV2A), and is therefore, a biomarker of synaptic density in the living brain. We also examined a measure of relative brain perfusion from the early part of the same PET scan. Our results provide evidence for synaptic density loss in the substantia nigra that had been previously reported, but also extend this to other early-Braak stage regions known to be affected in PD (brainstem, caudate, olfactory cortex). Importantly, we also found a direct association between synaptic density loss in the nigra and severity of symptoms in patients. A greater extent and wider distribution of synaptic density loss in PD patients with longer illness duration suggests that [11C]UCB-J PET can be used to measure synapse loss with disease progression. We also demonstrate lower brain perfusion in PD vs. HC groups, with a greater extent of abnormalities in those with longer duration of illness, suggesting that [11C]UCB-J PET can simultaneously provide information on changes in brain perfusion. These results implicate synaptic imaging as a useful PD biomarker for future disease-modifying interventions.

16.
J Nucl Med ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360052

RESUMO

PET imaging of synaptic vesicle glycoprotein 2A allows for noninvasive quantification of synapses. This first-in-human study aimed to evaluate the kinetics, test-retest reproducibility, and extent of specific binding of a recently developed synaptic vesicle glycoprotein 2A PET ligand, (R)-4-(3-(18F-fluoro)phenyl)-1-((3-methylpyridin-4-yl)methyl)pyrrolidine-2-one (18F-SynVesT-2), with fast brain kinetics. Methods: Nine healthy volunteers participated in this study and were scanned on a High Resolution Research Tomograph scanner with 18F-SynVesT-2. Five volunteers were scanned twice on 2 different days. Five volunteers were rescanned with preinjected levetiracetam (20 mg/kg, intravenously). Arterial blood was collected to calculate the plasma free fraction and generate the arterial input function. Individual MR images were coregistered to a brain atlas to define regions of interest for generating time-activity curves, which were fitted with 1- and 2-tissue-compartment (1TC and 2TC) models to derive the regional distribution volume (V T). The regional nondisplaceable binding potential (BP ND) was calculated from 1TC V T, using the centrum semiovale (CS) as the reference region. Results: 18F-SynVesT-2 was synthesized with high molar activity (187 ± 69 MBq/nmol, n = 19). The parent fraction of 18F-SynVesT-2 in plasma was 28% ± 8% at 30 min after injection, and the plasma free fraction was high (0.29 ± 0.04). 18F-SynVesT-2 entered the brain quickly, with an SUVpeak of 8 within 10 min after injection. Regional time-activity curves fitted well with both the 1TC and the 2TC models; however, V T was estimated more reliably using the 1TC model. The 1TC V T ranged from 1.9 ± 0.2 mL/cm3 in CS to 7.6 ± 0.8 mL/cm3 in the putamen, with low absolute test-retest variability (6.0% ± 3.6%). Regional BP ND ranged from 1.76 ± 0.21 in the hippocampus to 3.06 ± 0.29 in the putamen. A 20-min scan was sufficient to provide reliable V T and BP ND Conclusion: 18F-SynVesT-2 has fast kinetics, high specific uptake, and low nonspecific uptake in the brain. Consistent with the nonhuman primate results, the kinetics of 18F-SynVesT-2 is faster than the kinetics of 11C-UCB-J and 18F-SynVesT-1 in the human brain and enables a shorter dynamic scan to derive physiologic information on cerebral blood flow and synapse density.

17.
Cell Rep ; 43(1): 113636, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38183652

RESUMO

A limitation of conventional bulk-tissue proteome studies in amyotrophic lateral sclerosis (ALS) is the confounding of motor neuron (MN) signals by admixed non-MN proteins. Here, we leverage laser capture microdissection and nanoPOTS single-cell mass spectrometry-based proteomics to query changes in protein expression in single MNs from postmortem ALS and control tissues. In a follow-up analysis, we examine the impact of stratification of MNs based on cytoplasmic transactive response DNA-binding protein 43 (TDP-43)+ inclusion pathology on the profiles of 2,238 proteins. We report extensive overlap in differentially abundant proteins identified in ALS MNs with or without overt TDP-43 pathology, suggesting early and sustained dysregulation of cellular respiration, mRNA splicing, translation, and vesicular transport in ALS. Together, these data provide insights into proteome-level changes associated with TDP-43 proteinopathy and begin to demonstrate the utility of pathology-stratified trace sample proteomics for understanding single-cell protein dynamics in human neurologic diseases.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/metabolismo , Neurônios Motores/metabolismo , Proteoma/metabolismo , Proteômica
18.
Alzheimers Res Ther ; 16(1): 20, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273408

RESUMO

BACKGROUND: Effective, disease-modifying therapeutics for the treatment of Alzheimer's disease (AD) remain a large unmet need. Extensive evidence suggests that amyloid beta (Aß) is central to AD pathophysiology, and Aß oligomers are among the most toxic forms of Aß. CT1812 is a novel brain penetrant sigma-2 receptor ligand that interferes with the binding of Aß oligomers to neurons. Preclinical studies of CT1812 have demonstrated its ability to displace Aß oligomers from neurons, restore synapses in cell cultures, and improve cognitive measures in mouse models of AD. CT1812 was found to be generally safe and well tolerated in a placebo-controlled phase 1 clinical trial in healthy volunteers and phase 1a/2 clinical trials in patients with mild to moderate dementia due to AD. The unique objective of this study was to incorporate synaptic positron emission tomography (PET) imaging as an outcome measure for CT1812 in AD patients. METHODS: The present phase 1/2 study was a randomized, double-blind, placebo-controlled, parallel-group trial conducted in 23 participants with mild to moderate dementia due to AD to primarily evaluate the safety of CT1812 and secondarily its pharmacodynamic effects. Participants received either placebo or 100 mg or 300 mg per day of oral CT1812 for 24 weeks. Pharmacodynamic effects were assessed using the exploratory efficacy endpoints synaptic vesicle glycoprotein 2A (SV2A) PET, fluorodeoxyglucose (FDG) PET, volumetric MRI, cognitive clinical measures, as well as cerebrospinal fluid (CSF) biomarkers of AD pathology and synaptic degeneration. RESULTS: No treatment differences relative to placebo were observed in the change from baseline at 24 weeks in either SV2A or FDG PET signal, the cognitive clinical rating scales, or in CSF biomarkers. Composite region volumetric MRI revealed a trend towards tissue preservation in participants treated with either dose of CT1812, and nominally significant differences with both doses of CT1812 compared to placebo were found in the pericentral, prefrontal, and hippocampal cortices. CT1812 was safe and well tolerated. CONCLUSIONS: The safety findings of this 24-week study and the observed changes on volumetric MRI with CT1812 support its further clinical development. TRIAL REGISTRATION: The clinical trial described in this manuscript is registered at clinicaltrials.gov (NCT03493282).


Assuntos
Doença de Alzheimer , Camundongos , Animais , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Projetos Piloto , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Biomarcadores/líquido cefalorraquidiano
19.
Eur J Neurol ; 31(4): e16201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38235854

RESUMO

BACKGROUND AND PURPOSE: Resting-state electroencephalography (EEG) holds promise for assessing brain networks in amyotrophic lateral sclerosis (ALS). We investigated whether neural ß-band oscillations in the sensorimotor network could serve as an objective quantitative measure of progressive motor impairment and functional disability in ALS patients. METHODS: Resting-state EEG was recorded in 18 people with ALS and 38 age- and gender-matched healthy controls. We estimated source-localized ß-band spectral power in the sensorimotor cortex. Clinical evaluation included lower (LMN) and upper motor neuron scores, Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised score, fine motor function (FMF) subscore, and progression rate. Correlations between clinical scores and ß-band power were analysed and corrected using a false discovery rate of q = 0.05. RESULTS: ß-Band power was significantly lower in people with ALS than controls (p = 0.004), and correlated with LMN score (R = -0.65, p = 0.013), FMF subscore (R = -0.53, p = 0.036), and FMF progression rate (R = 0.52, p = 0.036). CONCLUSIONS: ß-Band spectral power in the sensorimotor cortex reflects clinically evaluated motor impairment in ALS. This technology merits further investigation as a biomarker of progressive functional disability.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Eletroencefalografia , Neurônios Motores , Encéfalo , Mapeamento Encefálico
20.
J Physiol ; 602(1): 243-244, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048257
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...