Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(11): e0070523, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37843370

RESUMO

IMPORTANCE: The lack of a reliable method to accurately detect when replication-competent HIV has been cleared is a major challenge in developing a cure. This study introduces a new approach called the HIVepsilon-seq (HIVε-seq) assay, which uses long-read sequencing technology and bioinformatics to scrutinize the HIV genome at the nucleotide level, distinguishing between defective and intact HIV. This study included 30 participants on antiretroviral therapy, including 17 women, and was able to discriminate between defective and genetically intact viruses at the single DNA strand level. The HIVε-seq assay is an improvement over previous methods, as it requires minimal sample, less specialized lab equipment, and offers a shorter turnaround time. The HIVε-seq assay offers a promising new tool for researchers to measure the intact HIV reservoir, advancing efforts towards finding a cure for this devastating disease.


Assuntos
Infecções por HIV , HIV , Provírus , Feminino , Humanos , Linfócitos T CD4-Positivos , DNA Viral/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Infecções por HIV/virologia , Nucleotídeos , Provírus/genética , Carga Viral , Análise de Sequência de DNA , Masculino , Fatores Sexuais , HIV/genética
2.
BMC Genomics ; 22(1): 148, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653280

RESUMO

BACKGROUND: Hepatitis C (HCV) and many other RNA viruses exist as rapidly mutating quasi-species populations in a single infected host. High throughput characterization of full genome, within-host variants is still not possible despite advances in next generation sequencing. This limitation constrains viral genomic studies that depend on accurate identification of hemi-genome or whole genome, within-host variants, especially those occurring at low frequencies. With the advent of third generation long read sequencing technologies, including Oxford Nanopore Technology (ONT) and PacBio platforms, this problem is potentially surmountable. ONT is particularly attractive in this regard due to the portable nature of the MinION sequencer, which makes real-time sequencing in remote and resource-limited locations possible. However, this technology (termed here 'nanopore sequencing') has a comparatively high technical error rate. The present study aimed to assess the utility, accuracy and cost-effectiveness of nanopore sequencing for HCV genomes. We also introduce a new bioinformatics tool (Nano-Q) to differentiate within-host variants from nanopore sequencing. RESULTS: The Nanopore platform, when the coverage exceeded 300 reads, generated comparable consensus sequences to Illumina sequencing. Using HCV Envelope plasmids (~ 1800 nt) mixed in known proportions, the capacity of nanopore sequencing to reliably identify variants with an abundance as low as 0.1% was demonstrated, provided the autologous reference sequence was available to identify the matching reads. Successful pooling and nanopore sequencing of 52 samples from patients with HCV infection demonstrated its cost effectiveness (AUD$ 43 per sample with nanopore sequencing versus $100 with paired-end short read technology). The Nano-Q tool successfully separated between-host sequences, including those from the same subtype, by bulk sorting and phylogenetic clustering without an autologous reference sequence (using only a subtype-specific generic reference). The pipeline also identified within-host viral variants and their abundance when the parameters were appropriately adjusted. CONCLUSION: Cost effective HCV whole genome sequencing and within-host variant identification without haplotype reconstruction are potential advantages of nanopore sequencing.


Assuntos
Hepatite C , Nanoporos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Análise de Sequência de DNA , Tecnologia , Sequenciamento Completo do Genoma
3.
Nat Commun ; 10(1): 4920, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664034

RESUMO

Familial Adult Myoclonic Epilepsy (FAME) is characterised by cortical myoclonic tremor usually from the second decade of life and overt myoclonic or generalised tonic-clonic seizures. Four independent loci have been implicated in FAME on chromosomes (chr) 2, 3, 5 and 8. Using whole genome sequencing and repeat primed PCR, we provide evidence that chr2-linked FAME (FAME2) is caused by an expansion of an ATTTC pentamer within the first intron of STARD7. The ATTTC expansions segregate in 158/158 individuals typically affected by FAME from 22 pedigrees including 16 previously reported families recruited worldwide. RNA sequencing from patient derived fibroblasts shows no accumulation of the AUUUU or AUUUC repeat sequences and STARD7 gene expression is not affected. These data, in combination with other genes bearing similar mutations that have been implicated in FAME, suggest ATTTC expansions may cause this disorder, irrespective of the genomic locus involved.


Assuntos
Proteínas de Transporte/genética , Cromossomos Humanos Par 2/genética , Expansão das Repetições de DNA , Epilepsias Mioclônicas/genética , Íntrons , Adolescente , Adulto , Criança , Pré-Escolar , Mapeamento Cromossômico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
4.
Nat Commun ; 10(1): 3120, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311926

RESUMO

High-throughput single-cell RNA sequencing is a powerful technique but only generates short reads from one end of a cDNA template, limiting the reconstruction of highly diverse sequences such as antigen receptors. To overcome this limitation, we combined targeted capture and long-read sequencing of T-cell-receptor (TCR) and B-cell-receptor (BCR) mRNA transcripts with short-read transcriptome profiling of barcoded single-cell libraries generated by droplet-based partitioning. We show that Repertoire and Gene Expression by Sequencing (RAGE-Seq) can generate accurate full-length antigen receptor sequences at nucleotide resolution, infer B-cell clonal evolution and identify alternatively spliced BCR transcripts. We apply RAGE-Seq to 7138 cells sampled from the primary tumor and draining lymph node of a breast cancer patient to track transcriptome profiles of expanded lymphocyte clones across tissues. Our results demonstrate that RAGE-Seq is a powerful method for tracking the clonal evolution from large numbers of lymphocytes applicable to the study of immunity, autoimmunity and cancer.


Assuntos
Evolução Clonal/genética , Linfócitos/metabolismo , Análise de Célula Única/métodos , Evolução Clonal/imunologia , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Cultura Primária de Células , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Sequência de RNA/métodos
5.
Proc Natl Acad Sci U S A ; 116(29): 14661-14670, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31253704

RESUMO

In hypersaline environments, Nanohaloarchaeota (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaeota [DPANN] superphylum) are thought to be free-living microorganisms. We report cultivation of 2 strains of Antarctic Nanohaloarchaeota and show that they require the haloarchaeon Halorubrum lacusprofundi for growth. By performing growth using enrichments and fluorescence-activated cell sorting, we demonstrated successful cultivation of Candidatus Nanohaloarchaeum antarcticus, purification of Ca. Nha. antarcticus away from other species, and growth and verification of Ca. Nha. antarcticus with Hrr. lacusprofundi; these findings are analogous to those required for fulfilling Koch's postulates. We use fluorescent in situ hybridization and transmission electron microscopy to assess cell structures and interactions; metagenomics to characterize enrichment taxa, generate metagenome assembled genomes, and interrogate Antarctic communities; and proteomics to assess metabolic pathways and speculate about the roles of certain proteins. Metagenome analysis indicates the presence of a single species, which is endemic to Antarctic hypersaline systems that support the growth of haloarchaea. The presence of unusually large proteins predicted to function in attachment and invasion of hosts plus the absence of key biosynthetic pathways (e.g., lipids) in metagenome assembled genomes of globally distributed Nanohaloarchaeota indicate that all members of the lineage have evolved as symbionts. Our work expands the range of archaeal symbiotic lifestyles and provides a genetically tractable model system for advancing understanding of the factors controlling microbial symbiotic relationships.


Assuntos
Halorubrum/fisiologia , Metagenoma , Nanoarchaeota/fisiologia , Simbiose/fisiologia , Regiões Antárticas , DNA Arqueal/genética , DNA Arqueal/isolamento & purificação , Citometria de Fluxo , Genoma Arqueal/genética , Halorubrum/ultraestrutura , Metagenômica , Microscopia Eletrônica de Transmissão , Nanoarchaeota/ultraestrutura , Filogenia , Salinidade
6.
Front Genet ; 10: 309, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031799

RESUMO

The human brain is one of the last frontiers of biomedical research. Genome-wide association studies (GWAS) have succeeded in identifying thousands of haplotype blocks associated with a range of neuropsychiatric traits, including disorders such as schizophrenia, Alzheimer's and Parkinson's disease. However, the majority of single nucleotide polymorphisms (SNPs) that mark these haplotype blocks fall within non-coding regions of the genome, hindering their functional validation. While some of these GWAS loci may contain cis-acting regulatory DNA elements such as enhancers, we hypothesized that many are also transcribed into non-coding RNAs that are missing from publicly available transcriptome annotations. Here, we use targeted RNA capture ('RNA CaptureSeq') in combination with nanopore long-read cDNA sequencing to transcriptionally profile 1,023 haplotype blocks across the genome containing non-coding GWAS SNPs associated with neuropsychiatric traits, using post-mortem human brain tissue from three neurologically healthy donors. We find that the majority (62%) of targeted haplotype blocks, including 13% of intergenic blocks, are transcribed into novel, multi-exonic RNAs, most of which are not yet recorded in GENCODE annotations. We validated our findings with short-read RNA-seq, providing orthogonal confirmation of novel splice junctions and enabling a quantitative assessment of the long-read assemblies. Many novel transcripts are supported by independent evidence of transcription including cap analysis of gene expression (CAGE) data and epigenetic marks, and some show signs of potential functional roles. We present these transcriptomes as a preliminary atlas of non-coding transcription in human brain that can be used to connect neurological phenotypes with gene expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...