Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 43(10): 1772-1783, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37318310

RESUMO

Trees are at risk of mortality during extreme drought, yet our understanding of the traits that govern the timing of drought-induced hydraulic failure remains limited. To address this, we tested SurEau, a trait-based soil-plant-atmosphere model designed to predict the dynamics of plant dehydration as represented by the changes in water potential against those observed in potted trees of four contrasting species (Pinus halepensis Mill., Populus nigra L., Quercus ilex L. and Cedrus atlantica (Endl.) Manetti ex Carriére) exposed to drought. SurEau was parameterized with a range of plant hydraulic and allometric traits, soil and climatic variables. We found a close correspondence between the predicted and observed plant water potential (in MPa) dynamics during the early phase drought, leading to stomatal closure, as well as during the latter phase of drought, leading to hydraulic failure in all four species. A global model's sensitivity analysis revealed that, for a common plant size (leaf area) and soil volume, dehydration time from full hydration to stomatal closure (Tclose) was most strongly controlled by the leaf osmotic potential (Pi0) and its influence on stomatal closure, in all four species, while the maximum stomatal conductance (gsmax) also contributed to Tclose in Q. ilex and C. atlantica. Dehydration times from stomatal closure to hydraulic failure (Tcav) was most strongly controlled by Pi0, the branch residual conductance (gres) and Q10a sensitivity of gres in the three evergreen species, while xylem embolism resistance (P50) was most influential in the deciduous species P. nigra. Our findings point to SurEau as a highly useful model for predicting changes in plant water status during drought and suggest that adjustments made in key hydraulic traits are potentially beneficial to delaying the onset of drought-induced hydraulic failure in trees.


Assuntos
Desidratação , Árvores , Secas , Folhas de Planta , Água , Xilema , Solo
2.
Tree Physiol ; 41(8): 1384-1399, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-33554260

RESUMO

Knowledge on variations of drought resistance traits are needed to predict the potential of trees to acclimate to coming severe drought events. Xylem vulnerability to embolism is a key parameter related to such droughts, and its phenotypic variability relies mainly on environmental plasticity. We investigated the structural determinants controlling the plasticity of vulnerability to embolism, focusing on the key elements involved in the air bubble entry in vessels, especially the intervessel pits. Poplar saplings (Populus tremula x alba (Aiton) Sm., 1804) grown in contrasted water availability or light exposure exhibited differences in the vulnerability to embolism (P50) in a range of 0.76 MPa. We then characterized the structural changes in features related to pit quantity and pit structure, from the pit ultrastructure to the organization of xylem vessels, using different microscopy techniques (transmission electron microscopy, scanning electron microscopy, light microscopy). A multispectral combination of X-ray microtomography and light microscopy analysis allowed measuring the vulnerability of each single vessel and testing some of the relationships between structural traits and vulnerability to embolism inside the xylem. The pit ultrastructure did not change, whereas the vessel dimensions increased with the vulnerability to embolism and the grouping index and fraction of intervessel cell wall both decreased with the vulnerability to embolism. These findings hold when comparing between trees or between the vessels inside the xylem of an individual tree. These results evidenced that plasticity of vulnerability to embolism in hybrid poplar occurs through changes in the pit quantity properties such as pit area and vessel grouping rather than changes on the pit structure.


Assuntos
Embolia , Populus , Parede Celular , Secas , Água , Xilema
3.
Plant Cell Environ ; 43(6): 1584-1594, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32187686

RESUMO

Xylem hydraulic failure is a major driver of tree death during drought. However, to better understand mortality risk in trees, especially during hot-drought events, more information is required on both rates of residual water-loss from small branches (gres ) after stomatal closure, as well as the phase transition temperature (Tp ), beyond which gres significantly increases. Here, we describe and test a novel low-cost tool, the DroughtBox, for phenotyping gres and Tp across species. The system consists of a programmable climatically controlled chamber in which branches dehydrate and changes in the mass recorded. Test measurements show that the DroughtBox maintains stable temperature and relative humidity across a range of set points, a prerequisite for getting accurate gres and Tp values. Among a study group of four conifer and one angiosperm species, we observed a range of gres (0.44-1.64 mmol H2 O m-2 s-1 ) and Tp (39.4-43.8°C) values. Furthermore, the measured time to hydraulic failure varied between two conifers species and was shortened in both species following a heatwave event. The DroughtBox is a reliable and customizable tool for phenotyping gres and Tp , as well as for testing models of time to hydraulic failure that will improve our ability to assess climate change impacts on plants.


Assuntos
Secas , Magnoliopsida/fisiologia , Temperatura , Água/fisiologia , Fenótipo , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Fatores de Tempo , Xilema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...