Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Hematol ; 29(2): 74-83, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35013048

RESUMO

PURPOSE OF REVIEW: Treatment outcome of relapsed or refractory AML patients remains dismal and new treatment options are needed. Adoptive cell therapy using CAR-T cells is a potentially interesting approach in this. RECENT FINDINGS: Several potentially interesting AML targets are being investigated with CAR-T therapy with over 60 clinical trials listed on clinicaltrials.gov. The first clinical data are only just emerging with mixed results, once more proving that further research is needed. SUMMARY: Adoptive cell therapy using chimeric antigen receptor T cells is being investigated in AML through many clinical trials. So far, no AML-specific antigen has been identified, requiring additional strategies to mitigate on-target off-tumor toxicity and to increase efficacy. Focus point is to acquire control over the CAR T cells once administered. Strategies to do so include biodegradable CARs, inducible CARs, suicide-switch containing CARs and two-component modular CARs. Limited and mixed results are available, confirming the risk of lasting toxicity for nonswitchable CARs. Initial results of modular CARs suggest toxicity can be mitigated whilst maintaining CAR activity by the use of modular CAR concepts that allows for 'ON' and 'OFF' switching.


Assuntos
Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/patologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/uso terapêutico
2.
Oncoimmunology ; 10(1): 1945804, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290907

RESUMO

Chimeric antigen receptor T cells (CAR-T) targeting CD19 have achieved significant success in patients with B cell malignancies. To date, implementation of CAR-T in other indications remains challenging due to the lack of truly tumor-specific antigens as well as control of CAR-T activity in patients. CD123 is highly expressed in acute myeloid leukemia (AML) blasts including leukemia-initiating cells making it an attractive immunotherapeutic target. However, CD123 expression in normal hematopoietic progenitor cells and endothelia bears the risk of severe toxicities and may limit CAR-T applications lacking fine-tuned control mechanisms. Therefore, we recently developed a rapidly switchable universal CAR-T platform (UniCAR), in which CAR-T activity depends on the presence of a soluble adapter called targeting module (TM), and confirmed clinical proof-of-concept for targeting CD123 in AML with improved safety. As costimulation via 4-1BB ligand (4-1BBL) can enhance CAR-T expansion, persistence, and effector functions, a novel CD123-specific TM variant (TM123-4-1BBL) comprising trimeric single-chain 4-1BBL was developed for transient costimulation of UniCAR-T cells (UniCAR-T) at the leukemic site in trans. TM123-4-1BBL-directed UniCAR-T efficiently eradicated CD123-positive AML cells in vitro and in a CDX in vivo model. Moreover, additional costimulation via TM123-4-1BBL enabled enhanced expansion and persistence with a modulated UniCAR-T phenotype. In addition, the increased hydrodynamic volume of TM123-4-1BBL prolonged terminal plasma half-life and ensured a high total drug exposure in vivo. In conclusion, expanding the soluble adapter optionality for CD123-directed UniCAR-T maintains the platforms high anti-leukemic efficacy and immediate control mechanism for a flexible, safe, and individualized CAR-T therapy of AML patients.


Assuntos
Subunidade alfa de Receptor de Interleucina-3 , Leucemia Mieloide Aguda , Antígenos de Neoplasias , Humanos , Imunoterapia Adotiva , Leucemia Mieloide Aguda/tratamento farmacológico , Linfócitos T
4.
Mol Ther Oncolytics ; 17: 408-420, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32462078

RESUMO

Chimeric antigen receptor T cells (CAR-T) targeting CD19 or B cell maturation antigen (BCMA) are highly effective against B cell malignancies. However, application of CAR-T to less differentially expressed targets remains a challenge due to lack of tumor-specific antigens and CAR-T controllability. CD123, a highly promising leukemia target, is expressed not only by leukemic and leukemia-initiating cells, but also by myeloid, hematopoietic progenitor, and certain endothelial cells. Thus, CAR-T lacking fine-tuned control mechanisms pose a high toxicity risk. To extend the CAR-T target landscape and widen the therapeutic window, we adapted our rapidly switchable universal CAR-T platform (UniCAR) to target CD123. UniCAR-T efficiently eradicated CD123+ leukemia in vitro and in vivo. Activation, cytolytic response, and cytokine release were strictly dependent on the presence of the CD123-specific targeting module (TM123) with comparable efficacy to CD123-specific CAR-T in vitro. We further demonstrated a pre-clinical proof of concept for the safety-switch mechanism using a hematotoxicity mouse model wherein TM123-redirected UniCAR-T showed reversible toxicity toward hematopoietic cells compared to CD123 CAR-T. In conclusion, UniCAR-T maintain full anti-leukemic efficacy, while ensuring rapid controllability to improve safety and versatility of CD123-directed immunotherapy. The safety and efficacy of UniCAR-T in combination with TM123 will now be assessed in a phase I clinical trial (ClinicalTrials.gov: NCT04230265).

5.
Mol Ther Nucleic Acids ; 18: 708-726, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31726388

RESUMO

The adaptation of CRISPR/Cas technology for use in mammals has revolutionized genome engineering. In particular with regard to clinical application, efficient expression of Cas9 within a narrow time frame is highly desirable to minimize the accumulation of off-target editing. We developed an effective, aptamer-independent retroviral delivery system for Cas9 mRNAs that takes advantage of a unique foamy virus (FV) capability: the efficient encapsidation and transfer of non-viral RNAs. This enabled us to create a FV vector toolbox for efficient, transient delivery (TraFo) of CRISPR/Cas9 components into different target tissues. Co-delivery of Cas9 mRNA by TraFo-Cas9 vectors in combination with retroviral, integration-deficient single guide RNA (sgRNA) expression enhanced efficacy and specificity of gene-inactivation compared with CRISPR/Cas9 lentiviral vector systems. Furthermore, separate TraFo-Cas9 delivery allowed the optional inclusion of a repair matrix for efficient gene correction or tagging as well as the addition of fluorescent negative selection markers for easy identification of off-target editing or incorrect repair events. Thus, the TraFo CRISPR toolbox represents an interesting alternative technology for gene inactivation and gene editing.

6.
Cancer Immunol Immunother ; 68(9): 1401-1415, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31414180

RESUMO

Although CAR T-cell therapy has demonstrated tremendous clinical efficacy especially in hematological malignancies, severe treatment-associated toxicities still compromise the widespread application of this innovative technology. Therefore, developing novel approaches to abrogate CAR T-cell-mediated side effects is of great relevance. Several promising strategies pursue the selective antibody-based depletion of adoptively transferred T cells via elimination markers. However, given the limited half-life and tissue penetration, dependence on the patients' immune system and on-target/off-side effects of proposed monoclonal antibodies, we sought to exploit αCAR-engineered T cells to efficiently eliminate CAR T cells. For comprehensive and specific recognition, a small peptide epitope (E-tag) was incorporated into the extracellular spacer region of CAR constructs. We provide first proof-of-concept for targeting this epitope by αE-tag CAR T cells, allowing an effective killing of autologous E-tagged CAR T cells both in vitro and in vivo whilst sparing cells lacking the E-tag. In addition to CAR T-cell cytotoxicity, the αE-tag-specific T cells can be empowered with cancer-fighting ability in case of relapse, hence, have versatile utility. Our proposed methodology can most probably be implemented in CAR T-cell therapies regardless of the targeted tumor antigen aiding in improving overall safety and survival control of highly potent gene-modified cells.


Assuntos
Epitopos de Linfócito T/genética , Imunoterapia Adotiva/métodos , Fragmentos de Peptídeos/genética , Neoplasias da Próstata/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Autoantígenos/imunologia , Citotoxicidade Imunológica , Epitopos de Linfócito T/imunologia , Engenharia Genética , Humanos , Masculino , Camundongos , Recidiva Local de Neoplasia , Células PC-3 , Neoplasias da Próstata/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Immunol ; 202(6): 1735-1746, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30728213

RESUMO

Long-term survival of adoptively transferred chimeric Ag receptor (CAR) T cells is often limited. Transplantation of hematopoietic stem cells (HSCs) transduced to express CARs could help to overcome this problem as CAR-armed HSCs can continuously deliver CAR+ multicell lineages (e.g., T cells, NK cells). In dependence on the CAR construct, a variable extent of tonic signaling in CAR T cells was reported; thus, effects of CAR-mediated tonic signaling on the hematopoiesis of CAR-armed HSCs is unclear. To assess the effects of tonic signaling, two CAR constructs were established and analyzed 1) a signaling CAR inducing a solid Ag-independent tonic signaling termed CAR-28/ζ and 2) a nonstimulating control CAR construct lacking intracellular signaling domains termed CAR-Stop. Bone marrow cells from immunocompetent mice were isolated, purified for HSC-containing Lin-cKit+ cells or the Lin-cKit+ Sca-1+ subpopulation (Lin-Sca-1+cKit+), and transduced with both CAR constructs. Subsequently, modified bone marrow cells were transferred into irradiated mice, in which they successfully engrafted and differentiated into hematopoietic progenitors. HSCs expressing the CAR-Stop sustained normal hematopoiesis. In contrast, expression of the CAR-28/ζ led to elimination of mature CAR+ T and B cells, suggesting that the CAR-mediated tonic signaling mimics autorecognition via the newly recombined immune receptors in the developing lymphocytes.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Ativação Linfocitária/fisiologia , Linfopoese/fisiologia , Receptores de Antígenos Quiméricos/metabolismo , Transdução de Sinais/fisiologia , Transferência Adotiva , Animais , Diferenciação Celular/fisiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Camundongos , Camundongos Endogâmicos C57BL
8.
J Autoimmun ; 90: 116-131, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29503042

RESUMO

As regulatory T cells (Tregs) play a fundamental role in immune homeostasis their adoptive transfer emerged as a promising treatment strategy for inflammation-related diseases. Preclinical animal models underline the superiority of antigen-specific Tregs compared to polyclonal cells. Here, we applied a modular chimeric antigen receptor (CAR) technology called UniCAR for generation of antigen-specific human Tregs. In contrast to conventional CARs, UniCAR-endowed Tregs are indirectly linked to their target cells via a separate targeting module (TM). Thus, transduced Tregs can be applied universally as their antigen-specificity is easily adjusted by TM exchange. Activation of UniCAR-engrafted Tregs occurred in strict dependence on the TM, facilitating a precise control over Treg activity. In order to augment efficacy and safety, different intracellular signaling domains were tested. Both 4-1BB (CD137) and CD28 costimulation induced strong suppressive function of genetically modified Tregs. However, in light of safety issues, UniCARs comprising a CD137-CD3ζ signaling domain emerged as constructs of choice for a clinical application of redirected Tregs. In that regard, Tregs isolated from patients suffering from autoimmune or inflammatory diseases were, for the first time, successfully engineered with UniCAR 137/ζ and efficiently suppressed patient-derived effector cells. Overall, the UniCAR platform represents a promising approach to improve Treg-based immunotherapies for tolerance induction.


Assuntos
Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T Reguladores/fisiologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Transferência Adotiva , Animais , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Receptores de Antígenos/genética , Especificidade do Receptor de Antígeno de Linfócitos T
9.
Oncotarget ; 9(7): 7487-7500, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29484126

RESUMO

Recent treatments of leukemias with T cells expressing chimeric antigen receptors (CARs) underline their impressive therapeutic potential but also their risk of severe side effects including cytokine release storms and tumor lysis syndrome. In case of cross-reactivities, CAR T cells may also attack healthy tissues. To overcome these limitations, we previously established a switchable CAR platform technology termed UniCAR. UniCARs are not directed against typical tumor-associated antigens (TAAs) but instead against a unique peptide epitope: Fusion of this peptide epitope to a recombinant antibody domain results in a target module (TM). TMs can cross-link UniCAR T cells with tumor cells and thereby lead to their destruction. So far, we constructed TMs with a short half-life. The fast turnover of such a TM allows to rapidly interrupt the treatment in case severe side effects occur. After elimination of most of the tumor cells, however, longer lasting TMs which have not to be applied via continous infusion would be more convenient for the patient. Here we describe and characterize a TM for retargeting UniCAR T cells to CD19 positive tumor cells. Moreover, we show that the TM can efficiently be produced in vivo from producer cells housed in a sponge-like biomimetic cryogel and, thereby, serving as an in vivo TM factory for an extended retargeting of UniCAR T cells to CD19 positive leukemic cells.

10.
Oncoimmunology ; 6(10): e1342909, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29123951

RESUMO

The universal modular chimeric antigen receptor (UniCAR) platform redirects CAR-T cells using a separated, soluble targeting module with a short half-life. This segregation allows precise controllability and flexibility. Herein we show that the UniCAR platform can be used to efficiently target solid cancers in vitro and in vivo using a pre-clinical prostate cancer model which overexpresses prostate stem cell antigen (PSCA). Short-term administration of the targeting module to tumor bearing immunocompromised mice engrafted with human UniCAR-T cells significantly delayed tumor growth and prolonged survival of recipient mice both in a low and high tumor burden model. In addition, we analyzed phenotypic and functional changes of cancer cells and UniCAR-T cells in association with the administration of the targeting module to reveal potential immunoevasive mechanisms. Most notably, UniCAR-T cell activation induced upregulation of immune-inhibitory molecules such as programmed death ligands. In conclusion, this work illustrates that the UniCAR platform mediates potent anti-tumor activity in a relevant in vitro and in vivo solid tumor model.

11.
Oncoimmunology ; 6(4): e1287246, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507794

RESUMO

Recent treatments of leukemias with chimeric antigen receptor (CAR) expressing T cells underline their impressive therapeutic potential. However, once adoptively transferred into patients, there is little scope left to shut them down after elimination of tumor cells or in case adverse side effects occur. This becomes of special relevance if they are directed against commonly expressed tumor associated antigens (TAAs) such as receptors of the ErbB family. To overcome this limitation, we recently established a modular CAR platform technology termed UniCAR. UniCARs are not directed against TAAs but instead against a unique peptide epitope on engineered recombinant targeting modules (TMs), which guide them to the target. In the absence of a TM UniCAR T cells are inactive. Thus an interruption of any UniCAR activity requires an elimination of unbound TM and the TM complexed with UniCAR T cells. Elimination of the latter one requires a disassembly of the UniCAR-TM complexes. Here, we describe a first nanobody (nb)-based TM directed against EGFR. The novel TM efficiently retargets UniCAR T cells to EGFR positive tumors and mediates highly efficient target-specific and target-dependent tumor cell lysis both in vitro and in vivo. After radiolabeling of the novel TM with 64Cu and 68Ga, we analyzed its biodistribution and clearance as well as the stability of the UniCAR-TM complexes. As expected unbound TM is rapidly eliminated while the elimination of the TM complexed with UniCAR T cells is delayed. Nonetheless, we show that UniCAR-TM complexes dissociate in vitro and in vivo in a concentration-dependent manner in line with the concept of a repeated stop and go retargeting of tumor cells via the UniCAR technology.

12.
Oncotarget ; 8(19): 31368-31385, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28404896

RESUMO

New treatment options especially of solid tumors including for metastasized prostate cancer (PCa) are urgently needed. Recent treatments of leukemias with chimeric antigen receptors (CARs) underline their impressive therapeutic potential. However CARs currently applied in the clinics cannot be repeatedly turned on and off potentially leading to severe life threatening side effects. To overcome these problems, we recently described a modular CAR technology termed UniCAR: UniCAR T cells are inert but can be turned on by application of one or multiple target modules (TMs). Here we present preclinical data summarizing the retargeting of UniCAR T cells to PCa cells using TMs directed to prostate stem cell- (PSCA) or/and prostate specific membrane antigen (PSMA). In the presence of the respective TM(s), we see a highly efficient target-specific and target-dependent activation of UniCAR T cells, secretion of pro-inflammatory cytokines, and PCa cell lysis both in vitro and experimental mice.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Linhagem Celular Tumoral , Citocinas/metabolismo , Citotoxicidade Imunológica , Modelos Animais de Doenças , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Vetores Genéticos/genética , Humanos , Imunoterapia , Leucócitos Mononucleares , Ativação Linfocitária/imunologia , Masculino , Camundongos , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Receptores de Antígenos de Linfócitos T/genética , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Sci Rep ; 7: 42855, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28205621

RESUMO

Combining stem cells with biomaterial scaffolds provides a promising strategy for the development of drug delivery systems. Here we propose an innovative immunotherapeutic organoid by housing human mesenchymal stromal cells (MSCs), gene-modified for the secretion of an anti-CD33-anti-CD3 bispecific antibody (bsAb), in a small biocompatible star-shaped poly(ethylene glycol)-heparin cryogel scaffold as a transplantable and low invasive therapeutic machinery for the treatment of acute myeloid leukemia (AML). The macroporous biohybrid cryogel platform displays effectiveness in supporting proliferation and survival of bsAb-releasing-MSCs overtime in vitro and in vivo, avoiding cell loss and ensuring a constant release of sustained and detectable levels of bsAb capable of triggering T-cell-mediated anti-tumor responses and a rapid regression of CD33+ AML blasts. This therapeutic device results as a promising and safe alternative to the continuous administration of short-lived immunoagents and paves the way for effective bsAb-based therapeutic strategies for future tumor treatments.


Assuntos
Anticorpos Biespecíficos/metabolismo , Criogéis/administração & dosagem , Células-Tronco Mesenquimais/citologia , Neoplasias/terapia , Animais , Materiais Biocompatíveis , Linhagem Celular Tumoral , Humanos , Imunoterapia/métodos , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Alicerces Teciduais , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Oncotarget ; 8(65): 108584-108603, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29312553

RESUMO

As the expression of a tumor associated antigen (TAA) is commonly not restricted to tumor cells, adoptively transferred T cells modified to express a conventional chimeric antigen receptor (CAR) might not only destroy the tumor cells but also attack target-positive healthy tissues. Furthermore, CAR T cells in patients with large tumor bulks will unpredictably proliferate and put the patients at high risk of adverse side effects including cytokine storms and tumor lysis syndrome. To overcome these problems, we previously established a modular CAR technology termed UniCAR: UniCAR T cells can repeatedly be turned on and off via dosing of a target module (TM). TMs are bispecific molecules which cross-link UniCAR T cells with target cells. After elimination of the respective TM, UniCAR T cells automatically turn off. Here we describe novel TMs against the disialoganglioside GD2 which is overexpressed in neuroectodermal but also many other tumors. In the presence of GD2-specific TMs, we see a highly efficient target-specific and -dependent activation of UniCAR T cells, secretion of pro-inflammatory cytokines, and tumor cell lysis both in vitro and experimental mice. According to PET-imaging, anti-GD2 TM enrich at the tumor site and are rapidly eliminated thus fulfilling all prerequisites of a UniCAR TM.

15.
Theranostics ; 6(5): 650-65, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27022413

RESUMO

Pheochromocytomas and extra-adrenal paragangliomas (PHEO/PGLs) are rare catecholamine-producing chromaffin cell tumors. For metastatic disease, no effective therapy is available. Overexpression of somatostatin type 2 receptors (SSTR2) in PHEO/PGLs promotes interest in applying therapies using somatostatin analogs linked to radionuclides and/or cytotoxic compounds, such as [(177)Lu]Lu-DOTA-(Tyr(3))octreotate (DOTATATE) and AN-238. Systematic evaluation of such therapies for the treatment of PHEO/PGLs requires sophisticated animal models. In this study, the mouse pheochromocytoma (MPC)-mCherry allograft model showed high tumor densities of murine SSTR2 (mSSTR2) and high tumor uptake of [(64)Cu]Cu-DOTATATE. Using tumor sections, we assessed mSSTR2-specific binding of DOTATATE, AN-238, and somatostatin-14. Therapeutic studies showed substantial reduction of tumor growth and tumor-related renal monoamine excretion in tumor-bearing mice after treatment with [(177)Lu]Lu-DOTATATE compared to AN-238 and doxorubicin. Analyses did not show agonist-dependent receptor downregulation after single mSSTR2-targeting therapies. This study demonstrates that the MPC-mCherry model is a uniquely powerful tool for the preclinical evaluation of SSTR2-targeting theranostic applications in vivo. Our findings highlight the therapeutic potential of somatostatin analogs, especially of [(177)Lu]Lu-DOTATATE, for the treatment of metastatic PHEO/PGLs. Repeated treatment cycles, fractionated combinations of SSTR2-targeting radionuclide and cytotoxic therapies, and other adjuvant compounds addressing additional mechanisms may further enhance therapeutic outcome.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/análogos & derivados , Octreotida/análogos & derivados , Feocromocitoma/tratamento farmacológico , Compostos Radiofarmacêuticos/administração & dosagem , Nanomedicina Teranóstica/métodos , Animais , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Camundongos , Octreotida/administração & dosagem , Peptídeos Cíclicos , Pirróis/administração & dosagem , Receptores de Somatostatina/metabolismo , Resultado do Tratamento
16.
Oncoimmunology ; 4(3): e994441, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25949920

RESUMO

In recent years, bispecific antibodies (bsAb) have emerged as promising tools for a target-specific redirection of T cells in order to eliminate malignant cells. However, CD3-engaging constructs might also activate T regulatory cells (Tregs) present in the tumor microenvironment. Whether this has detrimental or beneficial effects for tumor therapy is still controversially discussed.

17.
J Immunol ; 194(7): 3201-12, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25740942

RESUMO

NK cells are emerging as new effectors for immunotherapy of cancer. In particular, the genetic engraftment of chimeric Ag receptors (CARs) in NK cells is a promising strategy to redirect NK cells to otherwise NK cell-resistant tumor cells. On the basis of DNAX-activation protein 12 (DAP12), a signaling adaptor molecule involved in signal transduction of activating NK cell receptors, we generated a new type of CAR targeting the prostate stem cell Ag (PSCA). We demonstrate in this article that this CAR, designated anti-PSCA-DAP12, consisting of DAP12 fused to the anti-PSCA single-chain Ab fragment scFv(AM1) confers improved cytotoxicity to the NK cell line YTS against PSCA-positive tumor cells when compared with a CAR containing the CD3ζ signaling chain. Further analyses revealed phosphorylation of the DAP12-associated ZAP-70 kinase and IFN-γ release of CAR-engineered cells after contact with PSCA-positive target cells. YTS cells modified with DAP12 alone or with a CAR bearing a phosphorylation-defective ITAM were not activated. Notably, infused YTS cells armed with anti-PSCA-DAP12 caused delayed tumor xenograft growth and resulted in complete tumor eradication in a significant fraction of treated mice. The feasibility of the DAP12-based CAR was further tested in human primary NK cells and confers specific cytotoxicity against KIR/HLA-matched PSCA-positive tumor cells, which was further enhanced by KIR-HLA mismatches. We conclude that NK cells engineered with DAP12-based CARs are a promising tool for adoptive tumor immunotherapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Proteínas de Membrana/genética , Neoplasias/genética , Neoplasias/imunologia , Receptores de Células Matadoras Naturais/genética , Proteínas Recombinantes de Fusão , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Complexo CD3/genética , Complexo CD3/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Vetores Genéticos/genética , Humanos , Imunofenotipagem , Imunoterapia , Imunoterapia Adotiva , Interferon gama/biossíntese , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/mortalidade , Neoplasias/patologia , Neoplasias/terapia , Fenótipo , Fosforilação , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína-Tirosina Quinase ZAP-70/metabolismo
18.
Endocrinology ; 155(11): 4149-56, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25137029

RESUMO

Pheochromocytoma (PHEO) is a rare but potentially lethal neuroendocrine tumor arising from catecholamine-producing chromaffin cells. Especially for metastatic PHEO, the availability of animal models is essential for developing novel therapies. For evaluating therapeutic outcome in rodent PHEO models, reliable quantification of multiple organ lesions depends on dedicated small-animal in vivo imaging, which is still challenging and only available at specialized research facilities. Here, we investigated whether whole-body fluorescence imaging and monitoring of urinary free monoamines provide suitable parameters for measuring tumor progression in a murine allograft model of PHEO. We generated an mCherry-expressing mouse PHEO cell line by lentiviral gene transfer. These cells were injected subcutaneously into nude mice to perform whole-body fluorescence imaging of tumor development. Urinary free monoamines were measured by liquid chromatography with tandem mass spectrometry. Tumor fluorescence intensity and urinary outputs of monoamines showed tumor growth-dependent increases (P < .001) over the 30 days of monitoring post-tumor engraftment. Concomitantly, systolic blood pressure was increased significantly during tumor growth. Tumor volume correlated significantly (P < .001) and strongly with tumor fluorescence intensity (rs = 0.946), and urinary outputs of dopamine (rs = 0.952), methoxytyramine (rs = 0.947), norepinephrine (rs = 0.756), and normetanephrine (rs = 0.949). Dopamine and methoxytyramine outputs allowed for detection of lesions at diameters below 2.3 mm. Our results demonstrate that mouse pheochromocytoma (MPC)-mCherry cell tumors are functionally similar to human PHEO. Both tumor fluorescence intensity and urinary outputs of free monoamines provide precise parameters of tumor progression in this sc mouse model of PHEO. This animal model will allow for testing new treatment strategies for chromaffin cell tumors.


Assuntos
Neoplasias das Glândulas Suprarrenais/diagnóstico , Aminas/urina , Biomarcadores Tumorais/urina , Imagem Óptica/métodos , Feocromocitoma/diagnóstico , Neoplasias das Glândulas Suprarrenais/patologia , Neoplasias das Glândulas Suprarrenais/urina , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Nus , Feocromocitoma/patologia , Feocromocitoma/urina , Urinálise
19.
Prostate ; 74(13): 1335-46, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25053443

RESUMO

BACKGROUND: Recently, we described a novel modular platform technology in which T cell-recruitment and tumor-targeting domains of conventional bispecific antibodies are split to independent components, a universal effector module (EM) and replaceable monospecific/monovalent target modules (TMs) that form highly efficient T cell-retargeting complexes. Theoretically, our unique strategy should allow us to simultaneously retarget T cells to different tumor antigens by combining the EM with two or more different monovalent/monospecific TMs or even with bivalent/bispecific TMs, thereby overcoming limitations of a monospecific treatment such as the selection of target-negative tumor escape variants. METHODS: In order to advance our recently introduced prostate stem cell antigen (PSCA)-specific modular system for a dual-targeting of prostate cancer cells, two additional TMs were constructed: a monovalent/monospecific TM directed against the prostate-specific membrane antigen (PSMA) and a bivalent/bispecific TM (bsTM) with specificity for PSMA and PSCA. The functionality of the novel dual-targeting strategies was analyzed by performing T cell activation and chromium release assays. RESULTS: Similar to the PSCA-specific modular system, the novel PSMA-specific modular system mediates an efficient target-dependent and -specific tumor cell lysis at low E:T ratios and picomolar Ab concentrations. Moreover, by combination of the EM with either the bispecific TM directed to PSMA and PSCA or both monospecifc TMs directed to either PSCA or PSMA, dual-specific targeting complexes were formed which allowed us to kill potential escape variants expressing only one or the other target antigen. CONCLUSIONS: Overall, the novel modular system represents a promising tool for multiple tumor targeting.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos de Superfície/imunologia , Glutamato Carboxipeptidase II/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias da Próstata/terapia , Linfócitos T/imunologia , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/imunologia , Células HEK293 , Humanos , Imunoterapia , Masculino , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Linfócitos T/patologia
20.
Prostate ; 74(13): 1347-58, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25053504

RESUMO

BACKGROUND: There is still a need for new therapeutic options against prostate cancer. Conventional single-chain bispecific antibodies (bsAbs), that directly cross-link T cells and tumor cells, hold great potential for efficient tumor treatment. However, rapid development of novel bsAbs is hampered by laborious optimization to improve their efficacy and reduce potential side effects. To accelerate the development of a novel antibody tool for the redirection of T cells to different tumor-associated antigens, we recently introduced a modular targeting system. METHODS: We here describe a novel modular system for treatment of prostate cancer by retargeting of T cells to the prostate stem cell antigen (PSCA). Functionality of the novel PSCA-specific modular system was investigated in vitro by T cell activation and chromium release assays as well as in immunodeficient mice. RESULTS: Similar to a conventional bsAb CD3-PSCA, the novel PSCA-specific modular system induces activation of both CD4+ and CD8+ T cells leading to secretion of pro-inflammatory cytokines and highly efficient target-specific tumor cell lysis. The novel TM was ready-to-use from the time point of construction and functional at low E:T ratios and picomolar concentrations without further optimization. In addition, the PSCA-specific modular system delays outgrowth of s.c. tumors in mice comparable to bsAb CD3-PSCA. CONCLUSIONS: We have developed a novel PSCA-specific modular system which triggers an efficient T cell-mediated killing of PSCA+ tumor cells in vitro and in vivo. The new Ab-based targeting strategy can functionally replace conventional bsAbs and allows a flexible redirection of T cells to different tumor-associated antigens.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias da Próstata/terapia , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/imunologia , Humanos , Imunoterapia , Masculino , Camundongos , Próstata/imunologia , Próstata/patologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...