Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(2): 398-411, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38270149

RESUMO

The SARS-CoV-1 spike glycoprotein contains a fusion peptide (FP) segment that mediates the fusion of the viral and host cell membranes. Calcium ions are thought to position the FP optimally for membrane insertion by interacting with negatively charged residues in this segment (E801, D802, D812, E821, D825, and D830); however, which residues bind to calcium and in what combinations supportive of membrane insertion are unknown. Using biological assays and molecular dynamics studies, we have determined the functional configurations of FP-Ca2+ binding that likely promote membrane insertion. We first individually mutated the negatively charged residues in the SARS CoV-1 FP to assay their roles in cell entry and syncytia formation, finding that charge loss in the D802A or D830A mutants greatly reduced syncytia formation and pseudoparticle transduction of VeroE6 cells. Interestingly, one mutation (D812A) led to a modest increase in cell transduction, further indicating that FP function likely depends on calcium binding at specific residues and in specific combinations. To interpret these results mechanistically and identify specific modes of FP-Ca2+ binding that modulate membrane insertion, we performed molecular dynamics simulations of the SARS-CoV-1 FP and Ca2+ions. The preferred residue pairs for Ca2+ binding we identified (E801/D802, E801/D830, and D812/E821) include the two residues found to be essential for S function in our biological studies (D802 and D830). The three preferred Ca2+ binding pairs were also predicted to promote FP membrane insertion. We also identified a Ca2+ binding pair (E821/D825) predicted to inhibit FP membrane insertion. We then carried out simulations in the presence of membranes and found that binding of Ca2+ to SARS-CoV-1 FP residue pairs E801/D802 and D812/E821 facilitates membrane insertion by enabling the peptide to adopt conformations that shield the negative charges of the FP to reduce repulsion by the membrane phospholipid headgroups. This calcium binding mode also optimally positions the hydrophobic LLF region of the FP for membrane penetration. Conversely, Ca2+ binding to the FP E801/D802 and D821/D825 pairs eliminates the negative charge screening and instead creates a repulsive negative charge that hinders membrane penetration of the LLF motif. These computational results, taken together with our biological studies, provide an improved and nuanced mechanistic understanding of the dymanics of SARS-CoV-1 calcium binding and their potential effects on host cell entry.


Assuntos
Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Sequência de Aminoácidos , Cálcio/metabolismo , Fusão de Membrana/fisiologia , Peptídeos/química , Íons
2.
Langmuir ; 39(28): 9831-9840, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37409848

RESUMO

Cyclodextrin molecules are increasingly being used in biological research and as therapeutic agents to alter membrane cholesterol content, yet there is much to learn about their interactions with cell membranes. We present a biomembrane-based organic electronic platform capable of detecting interactions of cell membrane constituents with methyl-ß-cyclodextrin (MßCD). This approach enables label-free sensing and quantification of changes in membrane integrity resulting from such interactions. In this work, we employ cholesterol-containing supported lipid bilayers (SLBs) formed on conducting polymer-coated electrodes to investigate how MßCD impacts membrane resistance. By examining the outcomes of MßCD interactions with SLBs of varying cholesterol content, we demonstrate that changes in membrane permeability or resistance can be used as a functional measure for predicting cyclodextrin-mediated cholesterol extraction from cellular membranes. Furthermore, we use the SLB platforms to electronically monitor cholesterol delivery to membranes following exposure to MßCD pre-loaded with cholesterol, observing that cholesterol enrichment is commensurate with an increase in resistance. This biomembrane-based bioelectronic sensing system offers a tool to quantify the modulation of membrane cholesterol content using membrane resistance and provides information regarding MßCD-mediated changes in membrane integrity. Given the importance of membrane integrity for barrier function in cells, such knowledge is essential for our fundamental understanding of MßCD as a membrane cholesterol modulator and therapeutic delivery vehicle.


Assuntos
Ciclodextrinas , Impedância Elétrica , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo
3.
Commun Biol ; 6(1): 452, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095219

RESUMO

Familial hypercholesterolemia (FH) patients suffer from excessively high levels of Low Density Lipoprotein Cholesterol (LDL-C), which can cause severe cardiovascular disease. Statins, bile acid sequestrants, PCSK9 inhibitors, and cholesterol absorption inhibitors are all inefficient at treating FH patients with homozygous LDLR gene mutations (hoFH). Drugs approved for hoFH treatment control lipoprotein production by regulating steady-state Apolipoprotein B (apoB) levels. Unfortunately, these drugs have side effects including accumulation of liver triglycerides, hepatic steatosis, and elevated liver enzyme levels. To identify safer compounds, we used an iPSC-derived hepatocyte platform to screen a structurally representative set of 10,000 small molecules from a proprietary library of 130,000 compounds. The screen revealed molecules that could reduce the secretion of apoB from cultured hepatocytes and from humanized livers in mice. These small molecules are highly effective, do not cause abnormal lipid accumulation, and share a chemical structure that is distinct from any known cholesterol lowering drug.


Assuntos
Anticolesterolemiantes , Hipercolesterolemia Familiar Homozigota , Hiperlipoproteinemia Tipo II , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/farmacologia , Pró-Proteína Convertase 9/uso terapêutico , LDL-Colesterol , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/genética , Anticolesterolemiantes/farmacologia , Apolipoproteínas B/genética , Apolipoproteínas B/farmacologia , Apolipoproteínas B/uso terapêutico , Hepatócitos
4.
ACS Synth Biol ; 12(2): 502-510, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36651574

RESUMO

Assembling transmembrane proteins on organic electronic materials is one promising approach to couple biological functions to electrical readouts. A biosensing device produced in such a way would enable both the monitoring and regulation of physiological processes and the development of new analytical tools to identify drug targets and new protein functionalities. While transmembrane proteins can be interfaced with bioelectronics through supported lipid bilayers (SLBs), incorporating functional and oriented transmembrane proteins into these structures remains challenging. Here, we demonstrate that cell-free expression systems allow for the one-step integration of an ion channel into SLBs assembled on an organic conducting polymer, poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS). Using the large conductance mechanosensitive channel (MscL) as a model ion channel, we demonstrate that MscL adopts the correct orientation, remains mobile in the SLB, and is active on the polyelectrolyte surface using optical and electrical readouts. This work serves as an important illustration of a rapidly assembled bioelectronic platform with a diverse array of downstream applications, including electrochemical sensing, physiological regulation, and screening of transmembrane protein modulators.


Assuntos
Técnicas Biossensoriais , Bicamadas Lipídicas , Bicamadas Lipídicas/metabolismo , Canais Iônicos , Proteínas de Membrana/metabolismo , Eletrônica , Eletrodos
5.
J Virol ; 96(2): e0157721, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34730390

RESUMO

An enduring mystery in poxvirology is the mechanism by which virion morphogenesis is accomplished. A30.5 and L2 are two small regulatory proteins that are essential for this process. Previous studies have shown that vaccinia A30.5 and L2 localize to the ER and interact during infection, but how they facilitate morphogenesis is unknown. To interrogate the relationship between A30.5 and L2, we generated inducible complementing cell lines (CV1-HA-L2; CV1-3xFLAG-A30.5) and deletion viruses (vΔL2; vΔA30.5). Loss of either protein resulted in a block in morphogenesis and a significant (>100-fold) decrease in infectious viral yield. Structure-function analysis of L2 and A30.5, using transient complementation assays, identified key functional regions in both proteins. A clustered charge-to-alanine L2 mutant (L2-RRD) failed to rescue a vΔL2 infection and exhibits a significantly retarded apparent molecular weight in vivo (but not in vitro), suggestive of an aberrant posttranslational modification. Furthermore, an A30.5 mutant with a disrupted putative N-terminal α-helix failed to rescue a vΔA30.5 infection. Using our complementing cell lines, we determined that the stability of A30.5 is dependent on L2 and that wild-type L2 and A30.5 coimmunoprecipitate in the absence of other viral proteins. Further examination of this interaction, using wild-type and mutant forms of L2 or A30.5, revealed that the inability of mutant alleles to rescue the respective deletion viruses is tightly correlated with a failure of L2 to stabilize and interact with A30.5. L2 appears to function as a chaperone-like protein for A30.5, ensuring that they work together as a complex during viral membrane biogenesis. IMPORTANCE Vaccinia virus is a large, enveloped DNA virus that was successfully used as the vaccine against smallpox. Vaccinia continues to be an invaluable biomedical research tool in basic research and in gene therapy vector and vaccine development. Although this virus has been studied extensively, the complex process of virion assembly, termed morphogenesis, still puzzles the field. Our work aims to better understand how two small viral proteins that are essential for viral assembly, L2 and A30.5, function during early morphogenesis. We show that A30.5 requires L2 for stability and that these proteins interact in the absence of other viral proteins. We identify regions in each protein required for their function and show that mutations in these regions disrupt the interaction between L2 and A30.5 and fail to restore virus viability.


Assuntos
Morfogênese , Vaccinia virus/crescimento & desenvolvimento , Proteínas não Estruturais Virais/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Teste de Complementação Genética , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Vaccinia virus/genética , Vaccinia virus/metabolismo , Vaccinia virus/ultraestrutura , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Vírion/metabolismo , Vírion/ultraestrutura , Montagem de Vírus
6.
Cell Host Microbe ; 12(3): 277-88, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22980325

RESUMO

Regulation of intestinal dietary fat absorption is critical to maintaining energy balance. While intestinal microbiota clearly impact the host's energy balance, their role in intestinal absorption and extraintestinal metabolism of dietary fat is less clear. Using in vivo imaging of fluorescent fatty acid (FA) analogs delivered to gnotobiotic zebrafish hosts, we reveal that microbiota stimulate FA uptake and lipid droplet (LD) formation in the intestinal epithelium and liver. Microbiota increase epithelial LD number in a diet-dependent manner. The presence of food led to the intestinal enrichment of bacteria from the phylum Firmicutes. Diet-enriched Firmicutes and their products were sufficient to increase epithelial LD number, whereas LD size was increased by other bacterial types. Thus, different members of the intestinal microbiota promote FA absorption via distinct mechanisms. Diet-induced alterations in microbiota composition might influence fat absorption, providing mechanistic insight into how microbiota-diet interactions regulate host energy balance.


Assuntos
Ácidos Graxos/metabolismo , Metagenoma , Peixe-Zebra/metabolismo , Peixe-Zebra/microbiologia , Animais , Dieta , Metabolismo Energético , Fluorescência , Processamento de Imagem Assistida por Computador , Absorção Intestinal , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Fígado/metabolismo
7.
PLoS Genet ; 8(6): e1002754, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719264

RESUMO

The pancreaticobiliary ductal system connects the liver and pancreas to the intestine. It is composed of the hepatopancreatic ductal (HPD) system as well as the intrahepatic biliary ducts and the intrapancreatic ducts. Despite its physiological importance, the development of the pancreaticobiliary ductal system remains poorly understood. The SRY-related transcription factor SOX9 is expressed in the mammalian pancreaticobiliary ductal system, but the perinatal lethality of Sox9 heterozygous mice makes loss-of-function analyses challenging. We turned to the zebrafish to assess the role of SOX9 in pancreaticobiliary ductal system development. We first show that zebrafish sox9b recapitulates the expression pattern of mouse Sox9 in the pancreaticobiliary ductal system and use a nonsense allele of sox9b, sox9b(fh313), to dissect its function in the morphogenesis of this structure. Strikingly, sox9b(fh313) homozygous mutants survive to adulthood and exhibit cholestasis associated with hepatic and pancreatic duct proliferation, cyst formation, and fibrosis. Analysis of sox9b(fh313) mutant embryos and larvae reveals that the HPD cells appear to mis-differentiate towards hepatic and/or pancreatic fates, resulting in a dysmorphic structure. The intrahepatic biliary cells are specified but fail to assemble into a functional network. Similarly, intrapancreatic duct formation is severely impaired in sox9b(fh313) mutants, while the embryonic endocrine and acinar compartments appear unaffected. The defects in the intrahepatic and intrapancreatic ducts of sox9b(fh313) mutants worsen during larval and juvenile stages, prompting the adult phenotype. We further show that Sox9b interacts with Notch signaling to regulate intrahepatic biliary network formation: sox9b expression is positively regulated by Notch signaling, while Sox9b function is required to maintain Notch signaling in the intrahepatic biliary cells. Together, these data reveal key roles for SOX9 in the morphogenesis of the pancreaticobiliary ductal system, and they cast human Sox9 as a candidate gene for pancreaticobiliary duct malformation-related pathologies.


Assuntos
Ductos Biliares Intra-Hepáticos/crescimento & desenvolvimento , Fígado/crescimento & desenvolvimento , Pâncreas/crescimento & desenvolvimento , Fatores de Transcrição SOX9/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra , Animais , Ductos Biliares Intra-Hepáticos/embriologia , Ductos Biliares Intra-Hepáticos/metabolismo , Códon sem Sentido , Regulação da Expressão Gênica no Desenvolvimento , Fígado/embriologia , Fígado/metabolismo , Morfogênese/genética , Pâncreas/embriologia , Pâncreas/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Dev Biol ; 360(2): 276-85, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21968100

RESUMO

Lipids are essential for cellular function as sources of fuel, critical signaling molecules and membrane components. Deficiencies in lipid processing and transport underlie many metabolic diseases. To better understand metabolic function as it relates to disease etiology, a whole animal approach is advantageous, one in which multiple organs and cell types can be assessed simultaneously in vivo. Towards this end, we have developed an assay to visualize fatty acid (FA) metabolism in larval zebrafish (Danio rerio). The method utilizes egg yolk liposomes to deliver different chain length FA analogs (BODIPY-FL) to six day-old larvae. Following liposome incubation, larvae accumulate the analogs throughout their digestive organs, providing a comprehensive readout of organ structure and physiology. Using this assay we have observed that different chain length FAs are differentially transported and metabolized by the larval digestive system. We show that this assay can also reveal structural and metabolic defects in digestive mutants. Because this labeling technique can be used to investigate digestive organ morphology and function, we foresee its application in diverse studies of organ development and physiology.


Assuntos
Ácidos Graxos/metabolismo , Peixe-Zebra/fisiologia , Animais , Transporte Biológico , Compostos de Boro , Sistema Digestório/anatomia & histologia , Sistema Digestório/metabolismo , Gema de Ovo/metabolismo , Corantes Fluorescentes , Larva/anatomia & histologia , Larva/fisiologia , Metabolismo dos Lipídeos , Lipossomos , Microscopia de Fluorescência , Ácidos Palmíticos , Peixe-Zebra/anatomia & histologia , Proteínas de Peixe-Zebra/metabolismo
9.
Methods Cell Biol ; 101: 111-41, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21550441

RESUMO

Lipids serve essential functions in cells as signaling molecules, membrane components, and sources of energy. Defects in lipid metabolism are implicated in a number of pandemic human diseases, including diabetes, obesity, and hypercholesterolemia. Many aspects of how fatty acids and cholesterol are absorbed and processed by intestinal cells remain unclear and present a hurdle to developing approaches for disease prevention and treatment. Numerous studies have shown that the zebrafish is an excellent model for vertebrate lipid metabolism. In this chapter, we review studies that employ zebrafish to better understand lipid signaling and metabolism.


Assuntos
Colesterol/metabolismo , Gorduras na Dieta/metabolismo , Metabolismo dos Lipídeos/fisiologia , Peixe-Zebra/metabolismo , Animais , Humanos
10.
J Biol Chem ; 284(29): 19412-9, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19473964

RESUMO

The Sulfolobus solfataricus protein acetyltransferase (PAT) acetylates ALBA, an abundant nonspecific DNA-binding protein, on Lys(16) to reduce its DNA affinity, and the Sir2 deacetylase reverses the modification to cause transcriptional repression. This represents a "primitive" model for chromatin regulation analogous to histone modification in eukaryotes. We report the 1.84-A crystal structure of PAT in complex with coenzyme A. The structure reveals homology to both prokaryotic GNAT acetyltransferases and eukaryotic histone acetyltransferases (HATs), with an additional "bent helix" proximal to the substrate binding site that might play an autoregulatory function. Investigation of active site mutants suggests that PAT does not use a single general base or acid residue for substrate deprotonation and product reprotonation, respectively, and that a diffusional step, such as substrate binding, may be rate-limiting. The catalytic efficiency of PAT toward ALBA is low relative to other acetyltransferases, suggesting that there may be better, unidentified substrates for PAT. The structural similarity of PAT to eukaryotic HATs combined with its conserved role in chromatin regulation suggests that PAT is evolutionarily related to the eukaryotic HATs.


Assuntos
Acetiltransferases/metabolismo , Proteínas Arqueais/metabolismo , Sulfolobus solfataricus/enzimologia , Acetilação , Acetiltransferases/química , Acetiltransferases/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Sítios de Ligação/genética , Cristalização , Proteínas de Ligação a DNA/metabolismo , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Sulfolobus solfataricus/genética
11.
Clin Lipidol ; 4(4): 501-515, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20174460

RESUMO

Many fundamental questions remain regarding the cellular and molecular mechanisms of digestive lipid metabolism. One major impediment to answering important questions in the field has been the lack of a tractable and sufficiently complex model system. Until recently, most studies of lipid metabolism have been performed in vitro or in mice, yet each approach possesses certain limitations. The zebrafish (Danio rerio) offers an excellent model system in which to study lipid metabolism in vivo, owing to its small size, genetic tractability and optical clarity. Fluorescent lipid dyes and optical reporters of lipid-modifying enzymes are now being used in live zebrafish to generate visible readouts of digestive physiology. Here we review recent advances in visualizing intestinal lipid metabolism in live larval zebrafish.

12.
J Biol Chem ; 282(50): 36603-13, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-17925393

RESUMO

The human monocytic leukemia zinc finger (MOZ) protein is an essential transcriptional coactivator and histone acetyltransferase (HAT) that plays a primary role in the differentiation of erythroid and myeloid cells and is required to maintain hematopoietic stem cells. Chromosomal translocations involving the HAT-encoded region are also associated with acute myeloid leukemia. Here we present the x-ray crystal structure of the MOZ HAT domain and related biochemical studies. We find that the HAT domain contains a central region that is structurally and functionally conserved with the yeast MYST HAT protein Esa1, but contains more divergent N- and C-terminal regions harboring a TFIIIA-type zinc finger and helix-turn-helix DNA-binding motifs. Solution DNA-binding and acetyltransferase activity assays, in concert with mutagenesis, confirm that the MOZ HAT domain binds strongly to DNA through the zinc finger and helix-turn-helix motifs and that DNA binding and catalysis are not mutually exclusive. Consistent with the DNA-binding properties of MOZ, we also show that MOZ is able to acetylate nucleosomes and free histones equally well, whereas other HATs prefer free histones. Our results reveal, for the first time, that enzymatic and DNA-targeting activities can be contained within the same chromatin regulatory domain.


Assuntos
Histona Acetiltransferases/química , Acetilação , Motivos de Aminoácidos/fisiologia , Animais , Diferenciação Celular/fisiologia , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Humanos , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/metabolismo , Nucleossomos/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Translocação Genética/fisiologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...