Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Cycle ; 5(19): 2230-6, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16969089

RESUMO

The role of cyclin-dependent kinases in cell proliferation is well characterized, whereas their somewhat paradoxical role in catalyzing apoptosis is less understood. One Cdk complex implicated in both cell proliferation and cell death is cyclin A/Cdk2. During early embryonic development of Xenopus laevis, distinct isoforms of cyclin A are expressed at different times. From fertilization through gastrulation, cyclin A1 is the predominant isoform. Cyclin A1 primarily dimerizes with Cdk2 but not Cdk1. In contrast, cyclin A2 is expressed at a low level until gastrulation, when it becomes the major A-type cyclin and associates with both Cdk1 and Cdk2. When Xenopus embryos are treated with ionizing radiation (IR) prior to the midblastula transition (MBT), cyclin A1 protein persists beyond the MBT and forms an active complex with Cdk2. During this window of cyclin A1/Cdk2 activity, the embryo undergoes apoptosis. To test the hypothesis that cyclin A1-associated activity is a mediator of apoptosis, cyclin A1 protein level and associated kinase activity were measured in embryos treated with aphidicolin to induce apoptosis. Both cyclin A1 content and associated kinase activity were sustained after the MBT as embryos underwent apoptosis. To determine whether cyclin A1/Cdk2 was sufficient to induce apoptosis, recombinant cyclin A1/Cdk2 complex was injected into single-celled embryos, which induced apoptosis after the MBT. However, morpholinos targeting translation of cyclins A1 and A2 did not block apoptosis in embryos treated with X-rays or aphidicolin. These data indicate that cyclin A1/Cdk2 is sufficient, but not required for apoptosis during early development.


Assuntos
Apoptose , Ciclina A/fisiologia , Quinase 2 Dependente de Ciclina/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Blástula/citologia , Ciclina A/genética , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
2.
Cell Cycle ; 3(2): 212-7, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14712091

RESUMO

Studies in several model systems, including Xenopus laevis oocytes and embryos, have indicated that the checkpoint kinase, Chk1, is required for early development, even in the absence of damaged or unreplicated DNA. Chk1 is transiently activated at the midblastula transition (MBT) in Xenopus, a time when the cell cycle remodels from rapid embryonic cleavage cycles to longer, more regulated somatic cell cycles. To better understand the role of Chk1 in cell cycle remodeling, mRNA encoding Chk1 was microinjected into 1-cell stage embryos, and the effects on both the MBT and on the expression of several cell cycle regulators were examined. Zygotic transcription, a hallmark of the MBT that depends upon the nucleocytoplasmic (N/C) ratio, was blocked, as was degradation of maternal cyclin E, an event of the MBT that occurs independent of the N/C ratio. Levels of mitotic cyclins were elevated throughout early development, consistent with cell cycle arrest at G2/M. In these embryos, Cdc25A level was low, whereas Cdc25C level was not affected. Furthermore, the level of Wee1 increased at 6 hrs post-fertilization (pf), the time at which the MBT normally occurs, even though these embryos did not demonstrate any known markers of the MBT. These studies suggest that in addition to targeting Cdc25A for degradation, Chk1 may also function in cell cycle remodeling at the MBT by stabilizing Wee1 until it is replaced by the somatic Wee2 protein during gastrulation.


Assuntos
Blástula/metabolismo , Ciclo Celular/fisiologia , Proteínas Nucleares , Proteínas Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Fosfatases cdc25/metabolismo , Animais , Blástula/citologia , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Ciclina E/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Fertilização in vitro , Gástrula/citologia , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Microinjeções , Oócitos/citologia , Proteínas Tirosina Quinases/metabolismo , Xenopus laevis/embriologia
3.
Mech Dev ; 120(3): 315-23, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12591601

RESUMO

Prior to the midblastula transition (MBT), Xenopus laevis embryos do not engage cell cycle checkpoints, although overexpression of the kinase XChk1 arrests cell divisions. At the MBT, XChk1 transiently activates and promotes cell cycle lengthening. In this study, endogenous XChk1 was inhibited by the expression of dominant-negative XChk1 (DN-XChk1). Development appeared normal until the early gastrula stage, when cells lost attachments and chromatin condensed. TUNEL and caspase assays indicated these embryos died by apoptosis during gastrulation. Embryos with unreplicated DNA likewise died by apoptosis. Embryos expressing DN-XChk1 proceeded through additional rapid rounds of DNA replication but initiated zygotic transcription on schedule. Therefore, XChk1 is essential in the early Xenopus embryo for cell cycle remodeling and for survival after the MBT.


Assuntos
Apoptose/genética , Blástula/fisiologia , Proteínas Quinases/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Animais , Ciclo Celular/genética , Quinase 1 do Ponto de Checagem , Replicação do DNA/genética , Embrião não Mamífero/patologia , Gástrula/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Quinases/metabolismo , Transcrição Gênica , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Zigoto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...