Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(14): e2122174119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344424

RESUMO

Replication-dependent (RD) histones are deposited onto human cytomegalovirus (HCMV) genomes at the start of infection. We examined how HCMV affects the de novo production of RD histones and found that viral infection blocked the accumulation of RD histone mRNAs that normally occurs during the S phase. Furthermore, RD histone mRNAs present in HCMV-infected cells did not undergo the unique 3' processing required for their normal nuclear export and translation. The protein that orchestrates processing in the nucleus, stem loop­binding protein (SLBP), was found predominantly in the cytoplasm, and RD histone proteins were not de novo synthesized in HCMV-infected cells. Intriguingly, however, we found that SLBP was required for the efficient synthesis and assembly of infectious progeny virions. We conclude that HCMV infection attenuates RD histone mRNA accumulation and processing and the de novo protein synthesis of the RD histones, while utilizing SLBP for an alternative purpose to support infectious virion production.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Histonas , Replicação Viral , Divisão Celular , Citomegalovirus/genética , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/virologia , Replicação do DNA , Histonas/metabolismo , Humanos
2.
Proteomics ; 15(12): 1995-2005, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25758553

RESUMO

Human cytomegalovirus (HCMV) is a herpesvirus that is ubiquitously distributed worldwide and causes life-threating disease upon immunosuppression. HCMV expresses numerous proteins that function to establish an intracellular environment that supports viral replication. Like most DNA viruses, HCMV manipulates processes within the nucleus. We have quantified changes in the host cell nuclear proteome at 24 h post infection following infection with a clinical viral isolate. We have combined SILAC with multiple stages of fractionation to define changes. Tryptic peptides were analyzed by RP-HPLC combined with LC-MS/MS on an LTQ Orbitrap Velos mass spectrometer. Data from three biological replicates were processed with MaxQuant. A total of 1281 cellular proteins were quantified and 77 were found to be significantly differentially expressed. In addition, we observed 36 viral proteins associated with the nucleus. Diverse biological processes were significantly altered, including increased aspects of cell cycling, mRNA metabolism, and nucleocytoplasmic transport and decreased immune responses. We validated changes for several proteins including a subset of classical nuclear transport proteins. In addition, we demonstrated that disruption of these import factors is inhibitory to HCMV replication. Overall, we have identified HCMV-induced changes in the nuclear proteome and uncovered several processes that are important for infection. All MS data have been deposited in the ProteomeXchange with identifier PXD001909 (http://proteomecentral.proteomexchange.org/dataset/PXD001909).


Assuntos
Núcleo Celular/metabolismo , Infecções por Citomegalovirus/metabolismo , Citomegalovirus/fisiologia , Fibroblastos/metabolismo , Proteínas Nucleares/metabolismo , Proteômica/métodos , Western Blotting , Núcleo Celular/genética , Células Cultivadas , Cromatografia Líquida , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Fibroblastos/virologia , Humanos , Imunoprecipitação , Proteínas Nucleares/genética , Espectrometria de Massas em Tandem , Proteínas Virais/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...