Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3103, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099653

RESUMO

While the aurora has attracted attention for millennia, important questions remain unanswered. Foremost is how auroral electrons are accelerated before colliding with the ionosphere and producing auroral light. Powerful Alfvén waves are often found traveling Earthward above auroras with sufficient energy to generate auroras, but there has been no direct measurement of the processes by which Alfvén waves transfer their energy to auroral electrons. Here, we show laboratory measurements of the resonant transfer of energy from Alfvén waves to electrons under conditions relevant to the auroral zone. Experiments are performed by launching Alfvén waves and simultaneously recording the electron velocity distribution. Numerical simulations and analytical theory support that the measured energy transfer process produces accelerated electrons capable of reaching auroral energies. The experiments, theory, and simulations demonstrate a clear causal relationship between Alfvén waves and accelerated electrons that directly cause auroras.

2.
Phys Rev Lett ; 126(15): 155001, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929259

RESUMO

Fast-ion driven Alfvén waves with frequency close to the ion cyclotron frequency (f=0.58f_{ci}) excited by energetic ions from a neutral beam are stabilized via a controlled energetic ion density ramp for the first time in a fusion research plasma. The scaling of wave amplitude with injection rate is consistent with theory for single mode collisional saturation near marginal stability. The wave is identified as a shear-polarized global Alfvén eigenmode excited by Doppler-shifted cyclotron resonance with fast ions with sub-Alfvénic energetic ions, a first in fusion research plasmas.

3.
Phys Rev Lett ; 116(21): 215001, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27284662

RESUMO

We report the first observation of localized modulation of turbulent density fluctuations n[over ˜] (via beam emission spectroscopy) by neoclassical tearing modes (NTMs) in the core of the DIII-D tokamak. NTMs are important as they often lead to severe degradation of plasma confinement and disruptions in high-confinement fusion experiments. Magnetic islands associated with NTMs significantly modify the profiles and turbulence drives. In this experiment n[over ˜] was found to be modulated by 14% across the island. Gyrokinetic simulations suggest that n[over ˜] could be dominantly driven by the ion temperature gradient instability.

4.
Phys Rev Lett ; 116(19): 195002, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27232026

RESUMO

A shear Alfvén wave parametric instability is observed for the first time in the laboratory. When a single finite ω/Ω_{i} kinetic Alfvén wave (KAW) is launched in the Large Plasma Device above a threshold amplitude, three daughter modes are produced. These daughter modes have frequencies and parallel wave numbers that are consistent with copropagating KAW sidebands and a low frequency nonresonant mode. The observed process is parametric in nature, with the frequency of the daughter modes varying as a function of pump wave amplitude. The daughter modes are spatially localized on a gradient of the pump wave magnetic field amplitude in the plane perpendicular to the background field, suggesting that perpendicular nonlinear forces (and therefore k_{⊥} of the pump wave) play an important role in the instability process. Despite this, modulational instability theory with k_{⊥}=0 has several features in common with the observed nonresonant mode and Alfvén wave sidebands.

5.
Rev Sci Instrum ; 87(2): 025105, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931889

RESUMO

In 1991 a manuscript describing an instrument for studying magnetized plasmas was published in this journal. The Large Plasma Device (LAPD) was upgraded in 2001 and has become a national user facility for the study of basic plasma physics. The upgrade as well as diagnostics introduced since then has significantly changed the capabilities of the device. All references to the machine still quote the original RSI paper, which at this time is not appropriate. In this work, the properties of the updated LAPD are presented. The strategy of the machine construction, the available diagnostics, the parameters available for experiments, as well as illustrations of several experiments are presented here.

6.
Mol Psychiatry ; 19(11): 1235-42, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25113378

RESUMO

Proneurogenic compounds have recently shown promise in some mouse models of Alzheimer's pathology. Antagonists at Group II metabotropic glutamate receptors (Group II mGluR: mGlu2, mGlu3) are reported to stimulate neurogenesis. Agonists at those receptors trigger γ-secretase-inhibitor-sensitive biogenesis of Aß42 peptides from isolated synaptic terminals, which is selectively suppressed by antagonist pretreatment. We have assessed the therapeutic potential of chronic pharmacological inhibition of Group II mGluR in Dutch APP (Alzheimer's amyloid precursor protein E693Q) transgenic mice that accumulate Dutch amyloid-ß (Aß) oligomers but never develop Aß plaques. BCI-838 is a clinically well-tolerated, orally bioavailable, investigational prodrug that delivers to the brain BCI-632, the active Group II mGluR antagonist metabolite. Dutch Aß-oligomer-forming APP transgenic mice (APP E693Q) were dosed with BCI-838 for 3 months. Chronic treatment with BCI-838 was associated with reversal of transgene-related amnestic behavior, reduction in anxiety, reduction in levels of brain Aß monomers and oligomers, and stimulation of hippocampal neurogenesis. Group II mGluR inhibition may offer a unique package of relevant properties as an Alzheimer's disease therapeutic or prophylactic by providing both attenuation of neuropathology and stimulation of repair.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/psicologia , Ansiedade/tratamento farmacológico , Aprendizagem/efeitos dos fármacos , Psicotrópicos/farmacologia , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ansiedade/fisiopatologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Humanos , Aprendizagem/fisiologia , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Psicotrópicos/química , Receptores de Glutamato Metabotrópico/metabolismo
7.
Phys Rev Lett ; 113(2): 025003, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062197

RESUMO

In nonlinear dynamical systems with highly nonorthogonal linear eigenvectors, linear nonmodal analysis is more useful than normal mode analysis in predicting turbulent properties. However, the nontrivial time evolution of nonmodal structures makes quantitative understanding and prediction difficult. We present a technique to overcome this difficulty by modeling the effect that the advective nonlinearities have on spatial turbulent structures. The nonlinearities are taken as a periodic randomizing force with time scale consistent with critical balance arguments. We apply this technique to a model of drift wave turbulence in the Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)], where nonmodal effects dominate the turbulence. We compare the resulting growth rate spectra to the spectra obtained from a nonlinear simulation, showing good qualitative agreement, especially in comparison to the eigenmode growth rate spectra.

8.
Phys Rev Lett ; 110(19): 195001, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23705711

RESUMO

The nonlinear three-wave interaction process at the heart of the parametric decay process is studied by launching counterpropagating Alfvén waves from antennas placed at either end of the Large Plasma Device. A resonance in the beat wave response produced by the two launched Alfvén waves is observed and is identified as a damped ion acoustic mode based on the measured dispersion relation. Other properties of the interaction including the spatial profile of the beat mode and response amplitude are also consistent with theoretical predictions for a three-wave interaction driven by a nonlinear ponderomotive force.

9.
Phys Rev Lett ; 110(4): 045003, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25166172

RESUMO

A critical gradient threshold has been observed for the first time in a systematic, controlled experiment for a locally measured turbulent quantity in the core of a confined high-temperature plasma. In an experiment in the DIII-D tokamak where L(T(e))(-1) = |∇T(e)|/T(e) and toroidal rotation were varied, long wavelength (k(θ)ρ(s) ≲ 0.4) electron temperature fluctuations exhibit a threshold in L(T(e))(-1): below, they change little; above, they steadily increase. The increase in δT(e)/T(e) is concurrent with increased electron heat flux and transport stiffness. Observations were insensitive to rotation. Accumulated evidence strongly enforces the identification of the experimentally observed threshold with ∇T(e)-driven trapped electron mode turbulence.

10.
Rev Sci Instrum ; 83(10): 10E321, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126979

RESUMO

Polarimetry is a powerful diagnostic technique to probe plasma equilibria and magnetic fluctuations in fusion plasmas. In a high beta plasma such as the National Spherical Torus eXperiment (NSTX), these measurements are important to understand plasma stability and anomalous transport. A 288 GHz polarimeter operating along a major radial chord in retroreflection geometry has been developed and is being tested on the DIII-D tokamak to prepare for future implementation on NSTX-Upgrade. The system launches a rotating linearly polarized beam and detects the phase shift directly related to the polarization change caused by the plasma. To accomplish this, a pair of orthogonal linearly polarized beams with a stable difference frequency is generated using a single sideband modulation technique, then combined and transformed to be counter-rotating circularly polarized. To improve phase resolution, quasi-optical isolation, using Faraday rotators and polarizers, is utilized to eliminate a multi-path feedback effect, which is found to be the primary source of phase error. The bench tests in the laboratory and DIII-D power supply test discharges indicate ≤1° phase resolution.

11.
Rev Sci Instrum ; 83(10): 10E331, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126989

RESUMO

Doppler backscattering (DBS) is a plasma diagnostic used in tokamaks and other magnetic confinement devices to measure the fluctuation level of intermediate wavenumber (k(θ)ρ(s) ~ 1) density fluctuations and the lab frame propagation velocity of turbulence. Here, a synthetic DBS diagnostic is described, which has been used for comparisons between measurements in the DIII-D tokamak and predictions from nonlinear gyrokinetic simulations. To estimate the wavenumber range to which a Gaussian beam would be sensitive, a ray tracing code and a 2D finite difference, time domain full wave code are used. Experimental density profiles and magnetic geometry are used along with the experimental antenna and beam characteristics. An example of the effect of the synthetic diagnostic on the output of a nonlinear gyrokinetic simulation is presented.

12.
Phys Rev Lett ; 109(13): 135002, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23030095

RESUMO

Continuous control over azimuthal flow and shear in the edge of the Large Plasma Device (LAPD) has been achieved using a biasable limiter which has allowed a careful study of the effect of flow shear on pressure-gradient-driven turbulence and transport in the LAPD. The LAPD rotates spontaneously in the ion diamagnetic direction; positive limiter bias first reduces, then minimizes (producing a near-zero shear state), and finally reverses the flow into the electron diamagnetic direction. Degradation of particle confinement is observed in the minimum shearing state and a reduction in the turbulent particle flux is observed with increasing shearing in both flow directions. Near-complete suppression of the turbulent particle flux is observed for shearing rates comparable to the turbulent autocorrelation rate measured in the minimum shear state. Turbulent flux suppression is dominated by amplitude reduction in low-frequency (<10 kHz) density fluctuations. An increase in fluctuations for the highest shearing states is observed with the emergence of a coherent mode which does not lead to net particle transport. The variations of density fluctuations are fit well with power laws and compare favorably to simple models of shear suppression of transport.

13.
Phys Rev Lett ; 108(17): 175001, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22680872

RESUMO

Three-wave nonlinear coupling among spatial Fourier modes of density and magnetic fluctuations is directly measured in a magnetically confined toroidal plasma. Density fluctuations are observed to gain (lose) energy from (to) either equilibrium or fluctuating fields depending on the mode number. Experiments indicate that nonlinear interactions alter the phase relation between density and magnetic fluctuations, leading to strong particle transport.

14.
Phys Rev Lett ; 109(25): 255001, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23368473

RESUMO

Turbulence is a ubiquitous phenomenon in space and astrophysical plasmas, driving a cascade of energy from large to small scales and strongly influencing the plasma heating resulting from the dissipation of the turbulence. Modern theories of plasma turbulence are based on the fundamental concept that the turbulent cascade of energy is caused by the nonlinear interaction between counterpropagating Alfvén waves, yet this interaction has never been observationally or experimentally verified. We present here the first experimental measurement in a laboratory plasma of the nonlinear interaction between counterpropagating Alfvén waves, the fundamental building block of astrophysical plasma turbulence. This measurement establishes a firm basis for the application of theoretical ideas developed in idealized models to turbulence in realistic space and astrophysical plasma systems.

15.
Rev Sci Instrum ; 81(10): 10D519, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033874

RESUMO

The evolution of electromagnetic wave polarization is modeled for propagation in the major radial direction in the National Spherical Torus Experiment with retroreflection from the center stack of the vacuum vessel. This modeling illustrates that the Cotton-Mouton effect-elliptization due to the magnetic field perpendicular to the propagation direction-is shown to be strongly weighted to the high-field region of the plasma. An interaction between the Faraday rotation and Cotton-Mouton effects is also clearly identified. Elliptization occurs when the wave polarization direction is neither parallel nor perpendicular to the local transverse magnetic field. Since Faraday rotation modifies the polarization direction during propagation, it must also affect the resultant elliptization. The Cotton-Mouton effect also intrinsically results in rotation of the polarization direction, but this effect is less significant in the plasma conditions modeled. The interaction increases at longer wavelength and complicates interpretation of polarimetry measurements.

16.
Rev Sci Instrum ; 81(10): 10D907, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033939

RESUMO

A novel multichannel, tunable Doppler backscattering (DBS)/reflectometry system has recently been developed and applied to a variety of DIII-D plasmas. Either DBS or reflectometry can be easily configured for use in a wide range of plasma conditions using a flexible quasi-optical antenna system. The multiple closely spaced channels, when combined with other fluctuation diagnostic systems, have opened up new measurements of plasma properties. For example, the toroidal and fine-scale radial structure of coherent plasma oscillations, such as geodesic acoustic modes, have been probed simultaneously in the core of high temperature plasmas by applying correlation analysis between two toroidally separated DBS systems, as well as within the multichannel array. When configured as a reflectometer, cross-correlation with electron cyclotron emission radiometry has uncovered detailed information regarding the crossphase relationship between density and temperature fluctuations. The density-temperature crossphase measurement yields insight into the physics of tokamak turbulence at a fundamental level that can be directly compared with predictions from nonlinear gyrokinetic simulations.

17.
Phys Rev Lett ; 105(13): 135005, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-21230782

RESUMO

A new technique for manipulation and control of gradient-driven instabilities through nonlinear interaction with Alfvén waves in a laboratory plasma is presented. A narrow, field-aligned density depletion is created in the Large Plasma Device, resulting in coherent, unstable fluctuations on the periphery of the depletion. Two independent shear Alfvén waves are launched along the depletion at separate frequencies, creating a nonlinear beat-wave response at or near the frequency of the original instability. When the beat wave has sufficient amplitude, the original unstable mode is suppressed, leaving only the beat-wave response, generally at lower amplitude.

18.
Rev Sci Instrum ; 80(8): 083507, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19725655

RESUMO

A novel multichannel Doppler backscattering system has been designed and tested for application on the DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] and National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] fusion plasma devices. Doppler backscattering measures localized intermediate wavenumber (k(perpendicular)rho(i) approximately 1-4,k(perpendicular) approximately 2-15 cm(-1)) density fluctuations and the propagation velocity of turbulent structures. Microwave radiation is launched at a frequency that approaches a cutoff layer in the plasma and at an angle that is oblique to the cutoff layer. Bragg backscattering occurs near the cutoff layer for fluctuations with k(perpendicular) approximately -2k(i), where k(i) is the incident probe wave vector at the scattering location. The turbulence propagation velocity can be determined from the Doppler shift in the return signal together with knowledge of the scattering wavenumber. Ray tracing simulations are used to determine k(perpendicular) and the scattering location. Frequency modulation of a voltage-controlled solid state microwave source followed by frequency multiplication is used to create an array of finely spaced (Delta f=350 MHz) frequencies spanning 1.4 GHz. The center of the array bandwidth is tunable within the range of approximately 53-78 GHz. This article details the system design, laboratory tests, and presents initial data from DIII-D plasmas.

19.
Rev Sci Instrum ; 79(10): 10E714, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044532

RESUMO

Fluctuations are expected to play an important role in anomalous particle, momentum, and energy transport for magnetic confinement devices. Magnetic and density fluctuations are simultaneously measured using a high-speed laser-based Faraday rotation-interferometry system with a bandwidth of 500 kHz and 8 cm chord spacing. Density fluctuation and magnetic fluctuation profiles are obtained by using a newly developed fitting procedure.

20.
Rev Sci Instrum ; 79(10): 10F113, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044597

RESUMO

Doppler backscattering (DBS) has been successfully used to measure the E x B flow velocity and local intermediate wavenumber density fluctuation levels in the DIII-D tokamak. Depending on the launch angle and the frequency of the probing beam, the signal backscattered from the plasma cut-off layer is sensitive to density fluctuations at a specific perpendicular wavenumber (1 < or = k(perpendicular rho(s)) < or = 4). Due to the localization and high time resolution for poloidal flow measurements, DBS is well suited to detect stationary and time-dependent shear flows [zonal flows (ZFs)]. We present a novel scheme to measure ZF spectra using a dual-channel DBS system capable of simultaneously probing two minor radii separated by a distance of 0.2 cm < Delta r < 3 cm. Frequency spectra of geodesic acoustic modes and low frequency ZFs (f or = 10 kHz) have been obtained for 0.6 < r/a < 0.95.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...