Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 101: 249-261, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31722255

RESUMO

Hydrogels are attractive candidates for use in tissue-engineering and the encapsulation and subsequent differentiation of mesenchymal stem/stromal cells (MSCs) is a strategy that holds great promise for the repair and regeneration of bone and cartilage. However, MSCs are well-known for their sensitivity to mechanical cues, particularly substrate stiffness, and so the inherent softness of hydrogels is poorly matched to the mechanical cues that drive efficient osteogenesis. One approach to overcome this limitation is to harness mechanotransductive signalling pathways and override the signals cells receive from their environment. Previous reports demonstrate that mechanosensitive miRNAs, miR-100-5p and miR-143-3p can enhance MSC osteogenesis, using a complex multi-step procedure to transfect, encapsulate and differentiate the cells. In this study, we develop and characterise a facile system for in situ transfection of MSCs encapsulated within a light-crosslinkable gelatin-PEG hydrogel. Comparing the influence of different transfection agents and hydrogel compositions, we show that particle size, charge, and hydrogel mechanical properties all influence the diffusion of embedded transfection agent complexes. By incorporating both MSCs and transfection agents into the hydrogels we demonstrate successful in situ transfection of encapsulated MSCs. Comparing the efficacy of pre- and in situ transfection of miR-100-5p/miR-143-3p on the osteogenic capacity of hydrogel-encapsulated MSCs, our data demonstrates superior mineralisation and osteogenic gene expression following in situ transfections. Overall, we demonstrate a simple, one-pot system for in situ transfection of miRNAs to enhance MSC osteogenic potential and thus demonstrates significant promise to improve the efficiency of MSC differentiation in hydrogels for bone tissue-engineering applications. STATEMENT OF SIGNIFICANCE: Mesenchymal stromal cells (MSCs) are sensitive to cues from their surrounding microenvironment. Osteogenesis is enhanced in MSCs grown on stiffer substrates, but this is limited when using hydrogels for bone tissue-engineering. Modulating pro-osteogenic genes with mechanosensitive microRNAs (miRNAs) represents a potential tool to overcome this challenge. Here we report a hydrogel platform to deliver miRNAs to encapsulated MSCs. We characterise effects of hydrogel composition and transfection agent type on their mobility and transfection efficiency, demonstrating successful in situ transfection of MSCs and showing that miRNAs can significantly enhance osteogenic mineral deposition and marker gene expression. This system was simpler and more effective than conventional 2D transfection prior to encapsulation and therefore holds promise to improve MSC differentiation in bone tissue-engineering.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células Imobilizadas/metabolismo , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/farmacologia , Osteogênese/efeitos dos fármacos , Células Imobilizadas/citologia , Humanos , Células-Tronco Mesenquimais/citologia
2.
J Mater Chem B ; 6(9): 1394-1401, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254424

RESUMO

Tetrazine-norbornene ligation has previously been applied in bioorthognal polymer crosslinking to form hydrogels suitable for 3D cell culture. However, the tetrazine group is prone to reduction by the free thiol in a biological environment, reducing the crosslinking efficiency and shortening the storage of tetrazine containing linkers. Here, we introduce a method to form a tetrazine group in situ by catalytic oxidation of the dihydrogen tetrazine using horse radish peroxidase (HRP). Enzymatic oxidation is highly efficient at a low HRP concentration and does not require hydrogen peroxide, allowing for rapid gelation when HRP was added to an aqueous solution of 4-arm PEG dihydrogentetrazine and gelatin norbornene. The storage modulus of the resultant gels can be varied by changing the concentration of the crosslinker, which is in the range of 1.2-3.8 kPa. Human mesenchymal stem cells encapsulated within these gels, with varying stiffness, display varied interactions and morphologies and can be maintained with prolonged culture periods of at least 32 days of 3D culture. The enzymatic activation of tetrazine-norbornene is therefore an attractive addition to the tetrazine ligation that is highly suitable for cell related studies in tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...