Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 57(5): 2074-90, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24467709

RESUMO

Future treatments for individuals infected by the hepatitis C virus (HCV) will likely involve combinations of compounds that inhibit multiple viral targets. The helicase of HCV is an attractive target with no known drug candidates in clinical trials. Herein we describe an integrated strategy for identifying fragment inhibitors using structural and biophysical techniques. Based on an X-ray structure of apo HCV helicase and in silico and bioinformatic analyses of HCV variants, we identified that one site in particular (labeled 3 + 4) was the most conserved and attractive pocket to target for a drug discovery campaign. Compounds from multiple sources were screened to identify inhibitors or binders to this site, and enzymatic and biophysical assays (NMR and SPR) were used to triage the most promising ligands for 3D structure determination by X-ray crystallography. Medicinal chemistry and biophysical evaluations focused on exploring the most promising lead series. The strategies employed here can have general utility in drug discovery.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Inibidores Enzimáticos/química , Hepacivirus/enzimologia , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , RNA Helicases/antagonistas & inibidores , Serina Endopeptidases , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
2.
Antimicrob Agents Chemother ; 58(2): 698-705, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24217701

RESUMO

A challenge to the treatment of chronic hepatitis C with direct-acting antivirals is the emergence of drug-resistant hepatitis C virus (HCV) variants. HCV with preexisting polymorphisms that are associated with resistance to NS3/4A protease inhibitors have been detected in patients with chronic hepatitis C. We performed a comprehensive pooled analysis from phase 1b and phase 2 clinical studies of the HCV protease inhibitor faldaprevir to assess the population frequency of baseline protease inhibitor resistance-associated NS3 polymorphisms and their impact on response to faldaprevir treatment. A total of 980 baseline NS3 sequences were obtained (543 genotype 1b and 437 genotype 1a sequences). Substitutions associated with faldaprevir resistance (at amino acid positions 155 and 168) were rare (<1% of sequences) and did not compromise treatment response: in a phase 2 study in treatment-naive patients, six patients had faldaprevir resistance-associated polymorphisms at baseline, of whom five completed faldaprevir-based treatment and all five achieved a sustained virologic response 24 weeks after the end of treatment (SVR24). Among 13 clinically relevant amino acid positions associated with HCV protease resistance, the greatest heterogeneity was seen at NS3 codons 132 and 170 in genotype 1b, and the most common baseline substitution in genotype 1a was Q80K (99/437 [23%]). The presence of the Q80K variant did not reduce response rates to faldaprevir-based treatment. Across the three phase 2 studies, there was no significant difference in SVR24 rates between patients with genotype 1a Q80K HCV and those without Q80K HCV, whether treatment experienced (17% compared to 26%; P = 0.47) or treatment naive (62% compared to 66%; P = 0.72).


Assuntos
Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Hepacivirus/genética , Oligopeptídeos/uso terapêutico , Polimorfismo Genético , Inibidores de Proteases/uso terapêutico , Tiazóis/uso terapêutico , Proteínas não Estruturais Virais/genética , Substituição de Aminoácidos , Ácidos Aminoisobutíricos , Ensaios Clínicos como Assunto , Monitoramento de Medicamentos , Farmacorresistência Viral/efeitos dos fármacos , Expressão Gênica , Genótipo , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/virologia , Humanos , Leucina/análogos & derivados , Mutação , Prolina/análogos & derivados , Quinolinas , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo
3.
Antimicrob Agents Chemother ; 57(10): 4928-36, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23877706

RESUMO

Faldaprevir (BI 201335) is a selective NS3/4A protease inhibitor under development for the treatment of chronic hepatitis C virus (HCV) infection. NS3/4A genotyping and NS3 protease phenotyping analyses were performed to monitor the emergence of resistance in patients with HCV genotype 1 infection receiving faldaprevir alone or combined with pegylated interferon alfa 2a and ribavirin (PegIFN-RBV) during a phase 1b study. Among all baseline variants, a maximum 7-fold reduction in in vitro sensitivity to faldaprevir was observed for a rare NS3 (V/I)170T polymorphism. During faldaprevir monotherapy in treatment-naive patients, virologic breakthrough was common (77%, 20/26) and was associated with the emergence of resistance mutations predominantly carrying NS3 substitutions R155K in GT1a and D168V in GT1b. D168V conferred a greater reduction in faldaprevir sensitivity (1,800-fold) than R155K (330-fold); however, D168V was generally less fit than R155K in the absence of selective drug pressure. Treatment-experienced patients treated with faldaprevir-PegIFN-RBV triple therapy showed higher viral load reductions, lower rates of breakthrough (8%, 5/62), and less frequent emergence of resistance-associated variants compared with faldaprevir monotherapy. (This study has been registered at ClinicalTrials.gov under registration no. NCT00793793.).


Assuntos
Antivirais/uso terapêutico , Hepacivirus/efeitos dos fármacos , Oligopeptídeos/uso terapêutico , Tiazóis/uso terapêutico , Ácidos Aminoisobutíricos , Linhagem Celular , Genótipo , Técnicas de Genotipagem/métodos , Humanos , Leucina/análogos & derivados , Prolina/análogos & derivados , Inibidores de Proteases/uso terapêutico , Quinolinas , Proteínas não Estruturais Virais/antagonistas & inibidores
4.
J Virol ; 86(21): 11595-607, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22896614

RESUMO

Phosphatidylinositol-4-kinase IIIα (PI4KIIIα) is an essential host cell factor for hepatitis C virus (HCV) replication. An N-terminally truncated 130-kDa form was used to reconstitute an in vitro biochemical lipid kinase assay that was optimized for small-molecule compound screening and identified potent and specific inhibitors. Cell culture studies with PI4KIIIα inhibitors demonstrated that the kinase activity was essential for HCV RNA replication. Two PI4KIIIα inhibitors were used to select cell lines harboring HCV replicon mutants with a 20-fold loss in sensitivity to the compounds. Reverse genetic mapping isolated an NS4B-NS5A segment that rescued HCV RNA replication in PIK4IIIα-deficient cells. HCV RNA replication occurs on specialized membranous webs, and this study with PIK4IIIα inhibitor-resistant mutants provides a genetic link between NS4B/NS5A functions and PI4-phosphate lipid metabolism. A comprehensive assessment of PI4KIIIα as a drug target included its evaluation for pharmacologic intervention in vivo through conditional transgenic murine lines that mimic target-specific inhibition in adult mice. Homozygotes that induce a knockout of the kinase domain or knock in a single amino acid substitution, kinase-defective PI4KIIIα, displayed a lethal phenotype with a fairly widespread mucosal epithelial degeneration of the gastrointestinal tract. This essential host physiologic role raises doubt about the pursuit of PI4KIIIα inhibitors for treatment of chronic HCV infection.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , Replicação Viral , 1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Animais , Antivirais/farmacologia , Linhagem Celular , Análise Mutacional de DNA , Farmacorresistência Viral , Inibidores Enzimáticos/farmacologia , Feminino , Genes Essenciais , Hepatócitos/enzimologia , Hepatócitos/virologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Mutantes/genética , Proteínas não Estruturais Virais/genética
5.
Virology ; 387(1): 5-10, 2009 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-19304308

RESUMO

A functional screen of an adenovirus-delivered shRNA library that targets approximately 4500 host genes was performed to identify cellular factors that regulate hepatitis C virus (HCV) sub-genomic RNA replication. Seventy-three hits were further examined by siRNA oligonucleotide-directed knockdown, and silencing of the PI4KA gene was demonstrated to have a significant effect on the replication of a HCV genotype 1b replicon. Using transient siRNA oligonucleotide transfections and stable shRNA knockdown clones in HuH-7 cells, the PI4KA gene was shown to be essential for the replication of all HCV genotypes tested (1a, 1b and 2a) but not required for bovine viral diarrhea virus (BVDV) RNA replication.


Assuntos
Hepacivirus/fisiologia , Hepatite C/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA Viral/genética , Replicação Viral/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Adenoviridae/fisiologia , Linhagem Celular Tumoral , Regulação Viral da Expressão Gênica , Técnicas de Silenciamento de Genes , Biblioteca Gênica , Genoma Viral , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Hepacivirus/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes
6.
Antimicrob Agents Chemother ; 49(12): 4834-42, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16304143

RESUMO

Human papillomaviruses (HPVs) are the causative agents of benign and malignant lesions of the epithelium. Despite their high prevalence, there is currently no antiviral drug for the treatment of HPV-induced lesions. The ATPase and helicase activities of the highly conserved E1 protein of HPV are essential for viral DNA replication and pathogenesis and hence are considered valid antiviral targets. We recently described novel biphenylsulfonacetic acid inhibitors of the ATPase activity of E1 from HPV type 6 (HPV6). Based on kinetics and mutagenesis studies, we now report that these compounds act by an allosteric mechanism. They are hyperbolic competitive inhibitors of the ATPase activity of HPV6 E1 and also inhibit its helicase activity. Compounds in this series can also inhibit the ATPase activity of the closely related enzyme from HPV11; however, the most potent inhibitors of HPV6 E1 are significantly less active against the type 11 protein. We identified a single critical residue in HPV6 E1, Tyr-486, substituted by a cysteine in HPV11, which is primarily responsible for this difference in inhibitor potency. Interestingly, HPV18 E1, which also has a tyrosine at this position, could be inhibited by biphenylsulfonacetic acid derivatives, thereby raising the possibility that this class of inhibitors could be optimized as antiviral agents against multiple HPV types. These studies implicate Tyr-486 as a key residue for inhibitor binding and define an allosteric pocket on HPV E1 that can be exploited for future drug discovery efforts.


Assuntos
Acetatos/farmacologia , Trifosfato de Adenosina/metabolismo , Compostos de Bifenilo/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas Oncogênicas Virais/antagonistas & inibidores , Sulfonas/farmacologia , Tirosina/metabolismo , Regulação Alostérica , Compostos de Bifenilo/química , Humanos , Hidrólise , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/enzimologia , Relação Estrutura-Atividade
7.
J Virol ; 79(20): 13105-15, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16189012

RESUMO

Respiratory syncytial virus (RSV) is a major cause of respiratory illness in infants, immunocompromised patients, and the elderly. New antiviral agents would be important tools in the treatment of acute RSV disease. RSV encodes its own RNA-dependent RNA polymerase that is responsible for the synthesis of both genomic RNA and subgenomic mRNAs. The viral polymerase also cotranscriptionally caps and polyadenylates the RSV mRNAs at their 5' and 3' ends, respectively. We have previously reported the discovery of the first nonnucleoside transcriptase inhibitor of RSV polymerase through high-throughput screening. Here we report the design of inhibitors that have improved potency both in vitro and in antiviral assays and that also exhibit activity in a mouse model of RSV infection. We have isolated virus with reduced susceptibility to this class of inhibitors. The mutations conferring resistance mapped to a novel motif within the RSV L gene, which encodes the catalytic subunit of RSV polymerase. This motif is distinct from the catalytic region of the L protein and bears some similarity to the nucleotide binding domain within nucleoside diphosphate kinases. These findings lead to the hypothesis that this class of inhibitors may block synthesis of RSV mRNAs by inhibiting guanylylation of viral transcripts. We show that short transcripts produced in the presence of inhibitor in vitro do not contain a 5' cap but, instead, are triphosphorylated, confirming this hypothesis. These inhibitors constitute useful tools for elucidating the molecular mechanism of RSV capping and represent valid leads for the development of novel anti-RSV therapeutics.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , RNA Mensageiro/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/enzimologia , Ribonucleoproteínas/farmacologia , Administração Intranasal , Sequência de Aminoácidos , Animais , Domínio Catalítico/genética , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Capuzes de RNA/biossíntese , Capuzes de RNA/efeitos dos fármacos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/genética , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/fisiologia , Ribonucleoproteínas/administração & dosagem , Ribonucleoproteínas/química , Alinhamento de Sequência , Replicação Viral/efeitos dos fármacos
8.
Nature ; 426(6963): 186-9, 2003 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-14578911

RESUMO

Hepatitis C virus (HCV) infection is a serious cause of chronic liver disease worldwide with more than 170 million infected individuals at risk of developing significant morbidity and mortality. Current interferon-based therapies are suboptimal especially in patients infected with HCV genotype 1, and they are poorly tolerated, highlighting the unmet medical need for new therapeutics. The HCV-encoded NS3 protease is essential for viral replication and has long been considered an attractive target for therapeutic intervention in HCV-infected patients. Here we identify a class of specific and potent NS3 protease inhibitors and report the evaluation of BILN 2061, a small molecule inhibitor biologically available through oral ingestion and the first of its class in human trials. Administration of BILN 2061 to patients infected with HCV genotype 1 for 2 days resulted in an impressive reduction of HCV RNA plasma levels, and established proof-of-concept in humans for an HCV NS3 protease inhibitor. Our results further illustrate the potential of the viral-enzyme-targeted drug discovery approach for the development of new HCV therapeutics.


Assuntos
Antivirais/uso terapêutico , Carbamatos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Hepatite C/tratamento farmacológico , Compostos Macrocíclicos , Quinolinas , Inibidores de Serina Proteinase/uso terapêutico , Tiazóis/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Administração Oral , Antivirais/administração & dosagem , Antivirais/farmacocinética , Antivirais/farmacologia , Carbamatos/administração & dosagem , Carbamatos/química , Carbamatos/farmacocinética , Método Duplo-Cego , Hepacivirus/enzimologia , Hepacivirus/genética , Hepatite C/virologia , Humanos , Masculino , Poliproteínas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Inibidores de Serina Proteinase/administração & dosagem , Inibidores de Serina Proteinase/farmacocinética , Inibidores de Serina Proteinase/farmacologia , Tiazóis/administração & dosagem , Tiazóis/química , Tiazóis/farmacocinética , Carga Viral , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...