Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytogenet Genome Res ; 149(4): 304-311, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27710956

RESUMO

In the present study, the origin of recurrent rearrangements involving chromosome 6 in 3.2% of cells of Melolontha melolontha (Coleoptera, Scarabaeidae) was investigated. Various chromosome staining techniques, including C-banding, Giemsa and silver staining, as well as fluorescence in situ hybridization with a human 28S rDNA probe, were applied to M. melolontha chromosome spreads. In addition, related species of the genera Melolontha and Protaetia were studied. On chromosome 6 of M. melolontha, there is a fragile site-like structure which corresponds to an interstitial nucleolus organizer region (NOR). Despite this instability, the NOR remains unique and interstitial in this species, as well as in the other species studied. It is proposed that the intercalary position of the NOR both facilitates the detection of its fragile site-like instability and correlates with its relative stability during evolution. We explain this apparent paradox by strong counter-selection for imbalances of the chromosome fragment distal to the interstitial NORs, which would recurrently occur in the progeny of translocation carriers. Thus, the frequent telomeric position of the NORs in most animal and plant taxa would have no functional rationale but would be the consequence of selection against the meiotic transmission of chromosome imbalances.


Assuntos
Sítios Frágeis do Cromossomo/genética , Besouros/genética , Evolução Molecular , Região Organizadora do Nucléolo/genética , Animais , Corantes Azur , Besouros/classificação , Feminino , Humanos , Hibridização in Situ Fluorescente , Cariótipo , Masculino , Telômero/genética
2.
Front Plant Sci ; 6: 68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25745426

RESUMO

Mutagenesis is the only process by which unpredicted biological gene function can be identified. Despite that several macroalgal developmental mutants have been generated, their causal mutation was never identified, because experimental conditions were not gathered at that time. Today, progresses in macroalgal genomics and judicious choices of suitable genetic models make mutated gene identification possible. This article presents a comparative study of two methods aiming at identifying a genetic locus in the brown alga Ectocarpus siliculosus: positional cloning and Next-Generation Sequencing (NGS)-based mapping. Once necessary preliminary experimental tools were gathered, we tested both analyses on an Ectocarpus morphogenetic mutant. We show how a narrower localization results from the combination of the two methods. Advantages and drawbacks of these two approaches as well as potential transfer to other macroalgae are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...