Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(1): e2304410, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37975267

RESUMO

Aptamers are a promising class of affinity reagents because signal transduction mechanisms can be built into the reagent, so that they can directly produce a physically measurable output signal upon target binding. However, endowing the signal transduction functionality into an aptamer remains a trial-and-error process that can compromise its affinity or specificity and typically requires knowledge of the ligand binding domain or its structure. In this work, a design architecture that can convert an existing aptamer into a "reversible aptamer switch" whose kinetic and thermodynamic properties can be tuned without a priori knowledge of the ligand binding domain or its structure is described. Finally, by combining these aptamer switches with evanescent-field-based optical detection hardware that minimizes sample autofluorescence, this study demonstrates the first optical biosensor system that can continuously measure multiple biomarkers (dopamine and cortisol) in complex samples (artificial cerebrospinal fluid and undiluted plasma) with second and subsecond-scale time responses at physiologically relevant concentration ranges.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , Ligantes , Cinética , Termodinâmica
2.
Sci Adv ; 9(38): eadh4978, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37738337

RESUMO

We present a generalizable approach for designing biosensors that can continuously detect small-molecule biomarkers in real time and without sample preparation. This is achieved by converting existing antibodies into target-responsive "antibody-switches" that enable continuous optical biosensing. To engineer these switches, antibodies are linked to a molecular competitor through a DNA scaffold, such that competitive target binding induces scaffold switching and fluorescent signaling of changing target concentrations. As a demonstration, we designed antibody-switches that achieve rapid, sample preparation-free sensing of digoxigenin and cortisol in undiluted plasma. We showed that, by substituting the molecular competitor, we can further modulate the sensitivity of our cortisol switch to achieve detection at concentrations spanning 3.3 nanomolar to 3.3 millimolar. Last, we integrated this switch with a fiber optic sensor to achieve continuous sensing of cortisol in a buffer and blood with <5-min time resolution. We believe that this modular sensor design can enable continuous biosensor development for many biomarkers.


Assuntos
Anticorpos , Hidrocortisona , Corantes , Engenharia , Transdução de Sinais
3.
Opt Express ; 27(7): 9536-9549, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045103

RESUMO

Photonic crystal (PhC) nanobeams (NB) patterned on porous silicon (PSi) waveguide substrates are demonstrated for the specific, label-free detection of oligonucleotides. These photonic structures combine the large active sensing area intrinsic to PSi sensors with the high-quality (Q) factor and low-mode volume characteristic of compact resonant silicon-on-insulator (SOI) PhC NB devices. The PSi PhC NB can achieve a Q-factor near 9,000 and has an approximately 40-fold increased active sensing area for molecular attachment, compared to traditional SOI PhC NB sensors. The PSi PhC NB exhibits a resonance shift that is more than one order of magnitude larger than that of a similarly designed SOI PhC NB for the detection of small chemical molecules and 16-base peptide nucleic acids. The design and fabrication of PSi PhC NB sensors are compatible with CMOS processing, sensor arrays, and integration with lab-on-chip systems.

4.
Opt Express ; 24(4): 3248-57, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26906988

RESUMO

This paper describes the construction of a cryostat and an optical system with a free-space coupling efficiency of 56.5% ± 3.4% to a superconducting nanowire single-photon detector (SNSPD) for infrared quantum communication and spectrum analysis. A 1K pot decreases the base temperature to T = 1.7 K from the 2.9 K reached by the cold head cooled by a pulse-tube cryocooler. The minimum spot size coupled to the detector chip was 6.6 ± 0.11 µm starting from a fiber source at wavelength, λ = 1.55 µm. We demonstrated photon counting on a detector with an 8 × 7.3 µm2 area. We measured a dark count rate of 95 ± 3.35 kcps and a system detection efficiency of 1.64% ± 0.13%. We explain the key steps that are required to improve further the coupling efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...