Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Sci Rep ; 14(1): 10808, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734763

RESUMO

Finite element analysis (FEA) is commonly used in orthopaedic research to estimate localised tissue stresses and strains. A variety of boundary conditions have been proposed for isolated femur analysis, but it remains unclear how these assumed constraints influence FEA predictions of bone biomechanics. This study compared the femoral head deflection (FHD), stresses, and strains elicited under four commonly used boundary conditions (fixed knee, mid-shaft constraint, springs, and isostatic methods) and benchmarked these mechanics against the gold standard inertia relief method for normal and pathological femurs (extreme anteversion and retroversion, coxa vara, and coxa valga). Simulations were performed for the stance phase of walking with the applied femoral loading determined from patient-specific neuromusculoskeletal models. Due to unrealistic biomechanics observed for the commonly used boundary conditions, we propose a novel biomechanical constraint method to generate physiological femur biomechanics. The biomechanical method yielded FHD (< 1 mm), strains (approaching 1000 µÎµ), and stresses (< 60 MPa), which were consistent with physiological observations and similar to predictions from the inertia relief method (average coefficient of determination = 0.97, average normalized root mean square error = 0.17). Our results highlight the superior performance of the biomechanical method compared to current methods of constraint for  both healthy and pathological femurs.


Assuntos
Fêmur , Análise de Elementos Finitos , Marcha , Estresse Mecânico , Humanos , Fêmur/fisiologia , Marcha/fisiologia , Fenômenos Biomecânicos , Masculino , Adulto , Simulação por Computador , Feminino
2.
Biomech Model Mechanobiol ; 23(3): 1077-1090, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459157

RESUMO

Cerebral palsy (CP) includes a group of neurological conditions caused by damage to the developing brain, resulting in maladaptive alterations of muscle coordination and movement. Estimates of joint moments and contact forces during locomotion are important to establish the trajectory of disease progression and plan appropriate surgical interventions in children with CP. Joint moments and contact forces can be estimated using electromyogram (EMG)-informed neuromusculoskeletal models, but a reduced number of EMG sensors would facilitate translation of these computational methods to clinics. This study developed and evaluated a muscle synergy-informed neuromusculoskeletal modelling approach using EMG recordings from three to four muscles to estimate joint moments and knee contact forces of children with CP and typically developing (TD) children during walking. Using only three to four experimental EMG sensors attached to a single leg and leveraging an EMG database of walking data of TD children, the synergy-informed approach estimated total knee contact forces comparable to those estimated by EMG-assisted approaches that used 13 EMG sensors (children with CP, n = 3, R2 = 0.95 ± 0.01, RMSE = 0.40 ± 0.14 BW; TD controls, n = 3, R2 = 0.93 ± 0.07, RMSE = 0.19 ± 0.05 BW). The proposed synergy-informed neuromusculoskeletal modelling approach could enable rapid evaluation of joint biomechanics in children with unimpaired and impaired motor control within a clinical environment.


Assuntos
Paralisia Cerebral , Eletromiografia , Articulação do Joelho , Joelho , Humanos , Paralisia Cerebral/fisiopatologia , Criança , Joelho/fisiopatologia , Joelho/fisiologia , Fenômenos Biomecânicos , Masculino , Articulação do Joelho/fisiopatologia , Músculo Esquelético/fisiopatologia , Músculo Esquelético/fisiologia , Feminino , Modelos Biológicos , Caminhada/fisiologia
3.
Comput Methods Programs Biomed ; 248: 108132, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503071

RESUMO

BACKGROUND AND OBJECTIVE: Incidence of paediatric anterior cruciate ligament (ACL) rupture has increased substantially over recent decades. Following ACL rupture, ACL reconstruction (ACLR) surgery is typically performed to restore passive knee stability. This surgery involves replacing the failed ACL with a graft, however, surgeons must select from range of surgical parameters (e.g., type, size, insertion, and pre-tension) with no robust evidence guiding these decisions. This study presents a systemmatic computational approach to study effects of surgical parameter variation on kinematics of paediatric knees. METHODS: This study used sequentially-linked neuromusculoskeletal (NMSK) finite element (FE) models of three paediatric knees to estimate the: (i) sensitivity of post-operative knee kinematics to four surgical parameters (type, size, insertion, and pre-tension) through multi-input multi-output sensitivity analysis; (ii) influence of motion and loading conditions throughout stance phase of walking gait on sensitivity indices; and (iii) influence of subject-specific anatomy (i.e., knee size) on sensitivivty indices. A previously validated FE model of the intact knee for each subject served as a reference against which ACLR knee kinematics were compared. RESULTS: Sensitivity analyses revealed significant influences of surgical parameters on ACLR knee kinematics, albeit without discernible trend favouring any one parameter. Graft size and pre-tension were primary drivers of variation in knee translations and rotations, however, their effects fluctuated across stance indicating motion and loading conditions affect system sensitivity to surgical parameters. Importantly, the sensitivity of knee kinematics to surgical parameter varied across subjects, indicating geometry (i.e., knee size) influenced system sensitivity. Notably, alterations in graft parameters yielded substantial effects on kinematics (normalized root-mean-square-error > 10 %) compared to intact knee models, indicating surgical parameters vary post-operative knee kinematics. CONCLUSIONS: Overall, this initial study highlights the importance of surgical parameter selection on post-operative kinematics in the paediatric ACLR knee, and provides evidence of the need for personalized surgical planning to ultimately enhance patient outcomes.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Humanos , Criança , Análise de Elementos Finitos , Fenômenos Biomecânicos , Amplitude de Movimento Articular , Articulação do Joelho/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia
4.
Clin Biomech (Bristol, Avon) ; 111: 106152, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091916

RESUMO

BACKGROUND: Most cases of toe walking in children are idiopathic. We used pathology-specific neuromusculoskeletal predictive simulations to identify potential underlying neural and muscular mechanisms contributing to idiopathic toe walking. METHODS: A musculotendon contracture was added to the ankle plantarflexors of a generic musculoskeletal model to represent a pathology-specific contracture model, matching the reduced ankle dorsiflexion range-of-motion in a cohort of children with idiopathic toe walking. This model was employed in a forward dynamic simulation controlled by reflexes and supraspinal drive, governed by a multi-objective cost function to predict gait patterns with the contracture model. We validated the predicted gait using experimental gait data from children with idiopathic toe walking with ankle contracture, by calculating the root mean square errors averaged over all biomechanical variables. FINDINGS: A predictive simulation with the pathology-specific model with contracture approached experimental ITW data (root mean square error = 1.37SD). Gastrocnemius activation was doubled from typical gait simulations, but lacked a peak in early stance as present in electromyography. This synthesised idiopathic toe walking was more costly for all cost function criteria than typical gait simulation. Also, it employed a different neural control strategy, with increased length- and velocity-based reflex gains to the plantarflexors in early stance and swing than typical gait simulations. INTERPRETATION: The simulations provide insights into how a musculotendon contracture combined with altered neural control could contribute to idiopathic toe walking. Insights into these neuromuscular mechanisms could guide future computational and experimental studies to gain improved insight into the cause of idiopathic toe walking.


Assuntos
Contratura , Caminhada , Criança , Humanos , Caminhada/fisiologia , Dedos do Pé/fisiologia , Fenômenos Biomecânicos , Marcha/fisiologia
5.
J Aging Phys Act ; 32(2): 207-212, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016462

RESUMO

Physical activity (PA) and physical function (PF) are modifiable risk factors for falls in older adults, but their ability to predict future fall incidence is unclear. The purpose of this study was to determine the predictive ability of baseline measures of PA, PF, and lower limb strength on future falls. A total of 104 participants underwent baseline assessments of PA, PF, and lower limb strength. Falls were monitored prospectively for 12 months. Eighteen participants fell at least once during the 12-month follow-up. Participants recorded almost exclusively sedentary levels of activity. PA, PF, and lower limb strength did not differ between fallers and nonfallers. Twelve participants, who reported a minor musculoskeletal injury in the past 6 months, experienced a fall. The results of this study suggest that in a cohort of highly functioning, sedentary older adults, PA does not distinguish fallers from nonfallers and that the presence of a recent musculoskeletal injury appears to be a possible risk factor for falling.


Assuntos
Acidentes por Quedas , Exercício Físico , Humanos , Idoso , Estudos Prospectivos , Incidência , Fatores de Risco , Acidentes por Quedas/prevenção & controle
6.
Sci Rep ; 13(1): 18328, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884632

RESUMO

Finite element (FE) models have been widely used to investigate knee joint biomechanics. Most of these models have been developed to study adult knees, neglecting pediatric populations. In this study, an atlas-based approach was employed to develop subject-specific FE models of the knee for eight typically developing pediatric individuals. Initially, validation simulations were performed at four passive tibiofemoral joint (TFJ) flexion angles, and the resulting TFJ and patellofemoral joint (PFJ) kinematics were compared to corresponding patient-matched measurements derived from magnetic resonance imaging (MRI). A neuromusculoskeletal-(NMSK)-FE pipeline was then used to simulate knee biomechanics during stance phase of walking gait for each participant to evaluate model simulation of a common motor task. Validation simulations demonstrated minimal error and strong correlations between FE-predicted and MRI-measured TFJ and PFJ kinematics (ensemble average of root mean square errors < 5 mm for translations and < 4.1° for rotations). The FE-predicted kinematics were strongly correlated with published reports (ensemble average of Pearson's correlation coefficients (ρ) > 0.9 for translations and ρ > 0.8 for rotations), except for TFJ mediolateral translation and abduction/adduction rotation. For walking gait, NMSK-FE model-predicted knee kinematics, contact areas, and contact pressures were consistent with experimental reports from literature. The strong agreement between model predictions and experimental reports underscores the capability of sequentially linked NMSK-FE models to accurately predict pediatric knee kinematics, as well as complex contact pressure distributions across the TFJ articulations. These models hold promise as effective tools for parametric analyses, population-based clinical studies, and enhancing our understanding of various pediatric knee injury mechanisms. They also support intervention design and prediction of surgical outcomes in pediatric populations.


Assuntos
Articulação do Joelho , Articulação Patelofemoral , Adulto , Humanos , Criança , Análise de Elementos Finitos , Articulação do Joelho/patologia , Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Fenômenos Biomecânicos , Amplitude de Movimento Articular
7.
J Appl Biomech ; 39(5): 334-346, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37532263

RESUMO

Spasticity is a common impairment within pediatric neuromusculoskeletal disorders. How spasticity contributes to gait deviations is important for treatment selection. Our aim was to evaluate the pathophysiological mechanisms underlying gait deviations seen in children with spasticity, using predictive simulations. A cluster analysis was performed to extract distinct gait patterns from experimental gait data of 17 children with spasticity to be used as comparative validation data. A forward dynamic simulation framework was employed to predict gait with either velocity- or force-based hyperreflexia. This framework entailed a generic musculoskeletal model controlled by reflexes and supraspinal drive, governed by a multiobjective cost function. Hyperreflexia values were optimized to enable the simulated gait to best match experimental gait patterns. Three experimental gait patterns were extracted: (1) increased knee flexion, (2) increased ankle plantar flexion, and (3) increased knee flexion and ankle plantar flexion when compared with typical gait. Overall, velocity-based hyperreflexia outperformed force-based hyperreflexia. The first gait pattern could mostly be explained by rectus femoris and hamstrings velocity-based hyperreflexia, the second by gastrocnemius velocity-based hyperreflexia, and the third by gastrocnemius, soleus, and hamstrings velocity-based hyperreflexia. This study shows how velocity-based hyperreflexia from specific muscles contributes to different spastic gait patterns, which may help in providing targeted treatment.

8.
Orthop J Sports Med ; 11(7): 23259671231180874, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37529525

RESUMO

Background: Growth disturbance to leg length or coronal plane alignment are important considerations in pediatric anterior cruciate ligament (ACL) reconstruction (ACLR). Purpose/Hypothesis: The purpose of this study was to investigate the lower limb alignment and leg length of pediatric patients preoperatively and at approximately 1 year after transphyseal ACLR. Our hypothesis was that there would be no significant change in leg-length discrepancy (LLD) or operated-side alignment at follow-up. Study Design: Case series; Level of evidence, 4. Methods: Data were extracted from the prospective Queensland Children's Hospital Pediatric ACL Injury Registry. Long-leg alignment radiographs were captured preoperatively and at an approximately 12-month postoperative follow-up. Radiographic measures included leg length, LLD (injured minus uninjured leg length), mechanical axis deviation (MAD), mechanical and anatomical lateral distal femoral angle (mLDFA and aLDFA, respectively), and medial proximal tibial angle. We evaluated the effect of time (annual vs baseline) on imaging measurements with analysis of covariance, using the covariates of age, sex, and body mass index. Results: Data were available for 104 patients, of whom 34 (33%) had >12 months of skeletal growth remaining based on skeletal age. At an average follow-up time of 14.5 months after ACLR, there were no significant differences in mean lower limb alignment or longitudinal growth compared with baseline. However, seven patients demonstrated clinically significant changes to their mechanical axis or LLD (>10 mm change). A subgroup analysis of patients with >12 months of growth remaining (n = 34) demonstrated no statistically significant changes in mean alignment or LLD. Before surgery, LLD was -1.39 mm and the injured limb was in significantly more valgus compared with the uninjured lower limb (mean difference: MAD, 4.79 mm [95% CI, 2.64 to 6.94 mm]; mLDFA, -0.93° [95% CI, -1.29° to -0.57°], and aLDFA, -0.91° [95% CI, -1.31° to -0.50°]). Conclusion: After ACLR, there were no statistically significant changes in mean alignment or longitudinal growth; however, 7 out of 104 patients (6.7%) demonstrated clinically significant changes in alignment or LLD. Preoperatively, the injured limb was statistically significantly in more valgus compared with the uninjured limb with lateralized MAD.

9.
Biomech Model Mechanobiol ; 21(6): 1873-1886, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36229699

RESUMO

Neuromusculoskeletal models are a powerful tool to investigate the internal biomechanics of an individual. However, commonly used neuromusculoskeletal models are generated via linear scaling of generic templates derived from elderly adult anatomies and poorly represent a child, let alone children with a neuromuscular disorder whose musculoskeletal structures and muscle activation patterns are profoundly altered. Model personalization can capture abnormalities and appropriately describe the underlying (altered) biomechanics of an individual. In this work, we explored the effect of six different levels of neuromusculoskeletal model personalization on estimates of muscle forces and knee joint contact forces to tease out the importance of model personalization for normal and abnormal musculoskeletal structures and muscle activation patterns. For six children, with and without cerebral palsy, generic scaled models were developed and progressively personalized by (1) tuning and calibrating musculotendon units' parameters, (2) implementing an electromyogram-assisted approach to synthesize muscle activations, and (3) replacing generic anatomies with image-based bony geometries, and physiologically and physically plausible muscle kinematics. Biomechanical simulations of gait were performed in the OpenSim and CEINMS software on ten overground walking trials per participant. A mixed-ANOVA test, with Bonferroni corrections, was conducted to compare all models' estimates. The model with the highest level of personalization produced the most physiologically plausible estimates. Model personalization is crucial to produce physiologically plausible estimates of internal biomechanical quantities. In particular, personalization of musculoskeletal anatomy and muscle activation patterns had the largest effect overall. Increased research efforts are needed to ease the creation of personalized neuromusculoskeletal models.


Assuntos
Articulação do Joelho , Músculo Esquelético , Criança , Adulto , Humanos , Idoso , Músculo Esquelético/fisiologia , Eletromiografia , Articulação do Joelho/fisiologia , Marcha/fisiologia , Caminhada/fisiologia , Fenômenos Biomecânicos , Modelos Biológicos
11.
Pediatr Phys Ther ; 34(4): 480-487, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36067381

RESUMO

PURPOSE: This study investigated whether the functional improvements associated with functional electrical stimulation-assisted cycling, goal-directed training, and adapted cycling in children with cerebral palsy were maintained 8 weeks after the intervention ceased. METHODS: The intervention (2 × 1-hour supervised sessions and 1-hour home program/week) ran for 8 weeks. Primary outcomes were the Gross Motor Function Measure (GMFM-88) and the Canadian Occupational Performance Measure (COPM). Secondary outcomes included the GMFM-66 and goal scores, 5 times sit-to-stand test (FTSTS), Participation and Environment Measure-Children and Youth (PEM-CY), Pediatric Evaluation of Disability Inventory Computer Adaptive Test (PEDI-CAT), and cycling power output (PO). Outcomes were assessed at baseline, 8 and 16 weeks. RESULTS: Twenty children participated (mean age = 10 years 3 months; SD = 2 years 11 months; Gross Motor Function Classification System II = 5, III = 6, and IV = 9). Improvements were retained above baseline at 16 weeks on the GMFM and COPM. Improvements in cycling PO, PEDI-CAT scores, PEM-CY environmental barriers and FTSTS were also retained. CONCLUSION: Functional improvements in children with cerebral palsy were retained 8 weeks post-intervention.


Assuntos
Paralisia Cerebral , Canadá , Paralisia Cerebral/reabilitação , Objetivos , Humanos , Destreza Motora , Modalidades de Fisioterapia
12.
BMJ Open ; 12(8): e057465, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35985784

RESUMO

INTRODUCTION: There is currently no clear indication in the literature regarding a single or double hamstring tendon (single bundle) autograft for anterior cruciate ligament (ACL) reconstruction in the paediatric patient. The primary aim of this single blind randomised controlled trial is to determine whether a single or double hamstring tendon graft ACLR leads to superior clinical outcomes postsurgery in paediatric patients with ACL injury. METHODS AND ANALYSIS: Single site, prospective, single blind, randomised controlled trial with two parallel treatment arms. 100 patients aged 10-18 years who present with an isolated ACL tear±meniscal injury, verified on MRI, will be randomly allocated to one of the two surgical groups. The primary outcomes will be side-to-side difference in anterior tibial translation and graft failure incidence 12 months postsurgery. Primary and secondary outcomes will also be assessed at 2-year and 5-year postsurgery. ETHICS AND DISSEMINATION: Results will be presented in peer-reviewed journals and at international conferences and disseminated to participants and healthcare professionals via newsletters and hospital presentations. This study is approved by the Children's Health Queensland Hospital and Health Service Human Research Ethics committee. TRIAL REGISTRATION NUMBER: ACTRN12620001170910p; Australian New Zealand Clinical Trials Registry.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Tendões dos Músculos Isquiotibiais , Traumatismos do Joelho , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/efeitos adversos , Austrália , Criança , Tendões dos Músculos Isquiotibiais/transplante , Humanos , Traumatismos do Joelho/cirurgia , Articulação do Joelho/cirurgia , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Método Simples-Cego
13.
Comput Methods Programs Biomed ; 225: 107002, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35882107

RESUMO

BACKGROUND AND OBJECTIVE: Accurate representation of bone shape is important for subject-specific musculoskeletal models as it may influence modelling of joint kinematics, kinetics, and muscle dynamics. Statistical shape modelling is a method to estimate bone shape from minimal information, such as anatomical landmarks, and to avoid the time and cost associated with reconstructing bone shapes from comprehensive medical imaging. Statistical shape models (SSM) of lower limb bones have been developed and validated for adult populations but are not applicable to paediatric populations. This study aimed to develop SSM for paediatric lower limb bones and evaluate their reconstruction accuracy using sparse anatomical landmarks. METHODS: We created three-dimensional models of 56 femurs, 29 pelves, 56 tibias, 56 fibulas, and 56 patellae through segmentation of magnetic resonance images taken from 29 typically developing children (15 females; 13 ± 3.5 years). The SSM for femur, pelvis, tibia, fibula, patella, haunch (i.e., combined femur and pelvis), and shank (i.e., combined tibia and fibula) were generated from manual segmentation of comprehensive magnetic resonance images to describe the shape variance of the cohort. We implemented a leave-one-out cross-validation method wherein SSM were used to reconstruct novel bones (i.e., those not included in SSM generation) using full- (i.e., full segmentation) and sparse- (i.e., anatomical landmarks) input, and then compared these reconstructions against bones segmented from magnetic resonance imaging. Reconstruction performance was evaluated using root mean squared errors (RMSE, mm), Jaccard index (0-1), Dice similarity coefficient (DSC) (0-1), and Hausdorff distance (mm). All results reported in this abstract are mean ± standard deviation. RESULTS: Femurs, pelves, tibias, fibulas, and patellae reconstructed via SSM using full-input had RMSE between 0.89 ± 0.10 mm (patella) and 1.98 ± 0.38 mm (pelvis), Jaccard indices between 0.77 ± 0.03 (pelvis) and 0.90 ± 0.02 (tibia), DSC between 0.87 ± 0.02 (pelvis) and 0.95 ± 0.01 (tibia), and Hausdorff distances between 2.45 ± 0.57 mm (patella) and 9.01 ± 2.36 mm (pelvis). Reconstruction using sparse-input had RMSE ranging from 1.33 ± 0.61 mm (patella) to 3.60 ± 1.05 mm (pelvis), Jaccard indices ranging from 0.59 ± 0.10 (pelvis) to 0.83 ± 0.03 (tibia), DSC ranging from 0.74 ± 0.08 (pelvis) to 0.90 ± 0.02 (tibia), and Hausdorff distances ranging from 3.21 ± 1.19 mm (patella) to 12.85 ± 3.24 mm (pelvis). CONCLUSIONS: The SSM of paediatric lower limb bones showed reconstruction accuracy consistent with previously developed SSM and outperformed adult-based SSM when used to reconstruct paediatric bones.


Assuntos
Fêmur , Modelos Estatísticos , Adulto , Criança , Feminino , Fêmur/diagnóstico por imagem , Humanos , Imageamento Tridimensional/métodos , Extremidade Inferior/diagnóstico por imagem , Pelve , Tíbia/diagnóstico por imagem
14.
Gait Posture ; 96: 195-202, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35696825

RESUMO

BACKGROUND: The tibialis anterior tendon transfer (TATT) is the suggested surgical intervention in the Ponseti method for treatment of dynamic recurrent congenital talipes equinovarus (clubfoot) presenting as hindfoot varus and forefoot supination during the swing phase of gait. The indication for surgery, however, is typically based on visual assessment, which does not sufficiently examine the variability of foot motion in this cohort. RESEARCH QUESTION: The aim of this research was to determine whether subgroups, based on foot model kinematics, existed within a clubfoot cohort being considered for TATT surgery. METHODS: Sixteen children with recurrent clubfoot that had been previously treated with the Ponseti method and were being considered for tendon transfer surgery were prospectively recruited for this study and were required to attend a pre-surgery data collection session at the Queensland Children's Motion Analysis Service (QCMAS). Data collected included standard Plug-in-Gait (PiG) kinematics and kinetics, Oxford Foot Model (OFM) foot kinematics, and regional plantar loads based on anatomical masking using the integrated kinematic-pressure method. RESULTS: Results of this study identified two clear subgroups within the cohort. One group presented with increased hindfoot inversion across 91 % of the gait cycle. The second group presented with increased hindfoot adduction across 100 % of the gait cycle. Hindfoot adduction was statistically significantly different between the two groups. SIGNIFICANCE: The identification of these two groups propose a need for further classification of deformity within this cohort and query the appropriateness of this surgical intervention for both presentations.


Assuntos
Pé Torto Equinovaro , Fenômenos Biomecânicos , Pé Torto Equinovaro/diagnóstico , Pé Torto Equinovaro/cirurgia , , Humanos , Transferência Tendinosa/métodos , Resultado do Tratamento
15.
Disabil Rehabil ; 44(12): 2715-2722, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33147078

RESUMO

PURPOSE: This qualitative thematic analysis aimed to capture the experiences of children with cerebral palsy (CP) and caregivers who completed an 8-week goal-directed cycling programme, to provide insights on engagement and programme feasibility. METHODS: Children with CP (6-18 years, Gross Motor Function Classification Scale (GMFCS) levels II-IV) and caregivers completed semi-structured interviews at the end of the training programme. Interview transcripts were coded by two investigators and systematically organised into themes. A third investigator reviewed the final thematic map. RESULTS: 17 interviews were conducted with 29 participants (11 children: 7-14 years). Four themes emerged: facilitators and challenges to programme engagement; perceived outcomes; the functional-electrical stimulation (FES) cycling experience; and previous cycling participation. Engagement was facilitated by the "therapist's connection," "cycling is fun" and "participant driven goal setting," while "getting there" and "time off school" were identified as challenges. Participants positively linked improved physical function to greater independence. The FES-experience was "fun and challenging," and participants had mixed feelings about electrode "stickiness." Previous cycling participation was limited by access to adapted bikes. CONCLUSIONS: Children with CP enjoy riding bikes. Facilitators and challenges to engagement were identified that hold practical relevance for clinicians. Environmental and personal factors should be carefully considered when developing future programs, to maximise opportunities for success. CLINICAL TRIAL REGISTRATION NUMBER: Australian New Zealand Clinical Trials Registry - ACTRN12617000644369pIMPLICATIONS FOR REHABILITATIONAdapted cycling is a fun and engaging activity for young people with cerebral palsy.Environmental and personal factors should be carefully considered when prescribing adapted or FES cycling programs to this group.Engagement in adapted and FES-cycling programs can be facilitated by access to loan equipment, a goal-directed focus, and positive therapist-child relationship.Participation in adapted cycling is limited by access to adapted cycling equipment.


Assuntos
Ciclismo , Paralisia Cerebral , Terapia por Exercício , Objetivos , Adolescente , Austrália , Ciclismo/fisiologia , Cuidadores , Paralisia Cerebral/terapia , Criança , Humanos , Pesquisa Qualitativa
16.
Gait Posture ; 88: 318-321, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34246172

RESUMO

BACKGROUND: Musculoskeletal (MSK) models based on literature data are meant to represent a generic anatomy and are a popular tool employed by biomechanists to estimate the internal loads occurring in the lower limb joints, such as joint reaction forces (JRFs). However, since these models are normally just linearly scaled to an individual's anthropometry, it is unclear how their estimations would be affected by the personalization of key features of the MSK anatomy, one of which is the femoral version angle. RESEARCH QUESTION: How are the lower limb JRF magnitudes computed through a generic MSK model affected by changes in the femoral version? METHODS: We developed a bone-deformation tool in MATLAB (shared at https://simtk.org/projects/bone_deformity) and used it to create a set of seven OpenSim models spanning from 2˚ femoral retroversion to 40˚ anteversion. We used these models to simulate the gait of an elderly individual with an instrumented prosthesis implanted at their knee joint (5th Grand Challenge dataset) and quantified both the changes in JRFs magnitude due to varying the skeletal anatomy and their accuracy against the correspondent in vivo measurements at the knee joint. RESULTS: Hip and knee JRF magnitudes were affected by the femoral version with variations from the unmodified generic model up to 17.9 ±â€¯4.5% at the hip and 43.4 ±â€¯27.1% at the knee joint. The ankle joint was unaffected by the femoral geometry. The MSK models providing the most accurate knee JRFs (root mean squared error: 0.370 ±â€¯0.068 body weight, coefficient of determination: 0.757 ±â€¯0.104, peak error range: 0.09-0.42 body weight) were those with femoral anteversion angle closer to that measured on the segmented bone of the individual. SIGNIFICANCE: Femoral version substantially affects hip and knee JRFs estimated with generic MSK models, suggesting that personalizing key MSK anatomical features might be necessary for accurate estimation of JRFs with these models.


Assuntos
Fêmur , Fenômenos Mecânicos , Idoso , Fenômenos Biomecânicos , Humanos , Articulação do Joelho , Extremidade Inferior
17.
BMC Musculoskelet Disord ; 22(1): 521, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098920

RESUMO

BACKGROUND: Typical gait is often considered to be highly symmetrical, with gait asymmetries typically associated with pathological gait. Whilst gait symmetry is often expressed in symmetry ratios, measures of symmetry do not provide insight into how these asymmetries affect gait variables. To fully understand changes caused by gait asymmetry, we must first develop a normative database for comparison. Therefore, the aim of this study was to describe normative reference values of regional plantar load and present comparisons with two pathological case studies. METHODS: A descriptive study of the load transfer of plantar pressures in typically developed children was conducted to develop a baseline for comparison of the effects of gait asymmetry in paediatric clinical populations. Plantar load and 3D kinematic data was collected for 17 typically developed participants with a mean age of 9.4 ± 4.0 years. Two case studies were also included; a 10-year-old male with clubfoot and an 8-year-old female with a flatfoot deformity. Data was analysed using a kinematics-pressure integration technique for anatomical masking into 5 regions of interest; medial and lateral forefoot, midfoot, and medial and lateral hindfoot. RESULTS: Clear differences between the two case studies and the typical dataset were seen for the load transfer phase of gait. For case study one, lateral bias was seen in the forefoot of the trailing foot across all variables, as well as increases in contact area, force and mean pressure in the lateral hindfoot of the leading foot. For case study two, the forefoot of the trailing foot produced results very similar to the typical dataset across all variables. In the hindfoot of the leading foot, medial bias presents most notably in the force and mean pressure graphs. CONCLUSIONS: This study highlights the clinical significance of the load transfer phase of gait, providing meaningful information for intervention planning.


Assuntos
Pé Torto Equinovaro , , Adolescente , Fenômenos Biomecânicos , Criança , Pré-Escolar , Feminino , Marcha , Humanos , Masculino , Pressão
18.
Hand (N Y) ; 16(2): 213-222, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31137982

RESUMO

Background: Chronic recurrent multifocal osteomyelitis (CRMO) is a rare autoinflammatory condition characterized by bone pain and swelling, secondary to sterile bone osteolytic lesions. Estimated incidence is 1:1 000 000, with ~2% involving the hand. We present a case series of CRMO of the hand and review the available literature, with the aim of educating and raising awareness of this condition. Methods: A retrospective chart review was conducted for all patients presenting to the institution diagnosed with CRMO involving the hands. Subsequently, a literature review was performed. Results/Case Series: Three cases of CRMO of the hand were identified. Age ranged from 20 months to 6 years, with 1 female. Time from presentation to diagnosis ranged from 3 to 15 months. Two had a single lesion, with the remaining patient having a second lesion on full-body magnetic resonance imaging (MRI). Three lesions involved phalanges, and one involved a metacarpal. Two received antibiotics without improvement prior to diagnosis. After diagnosis of CRMO, two received intravenous pamidronate. They both later showed improvement on MRI. Conclusion: CRMO is a rare disease with scarce literature to guide management. We present a series of CRMO specifically of the hand. The cases educate key stakeholders, raise awareness of the diagnosis, and illustrate challenging aspects of managing these patients. This includes the special functional and anatomical consideration essential in managing cases involving the hand.


Assuntos
Osteomielite , Doenças Raras , Criança , Pré-Escolar , Feminino , Mãos/patologia , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Osteomielite/diagnóstico por imagem , Osteomielite/tratamento farmacológico , Estudos Retrospectivos
19.
Dev Med Child Neurol ; 62(12): 1406-1413, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33146438

RESUMO

AIM: To test the efficacy of functional electrical stimulation (FES) cycling, goal-directed training, and adapted cycling, compared with usual care, to improve function in children with cerebral palsy (CP). METHOD: The intervention was delivered between 2017 and 2019 and included three sessions per week for 8 weeks (2×1h sessions at a children's hospital, and 1h home programme/week). Hospital sessions included 30 minutes of FES cycling and 30 minutes of goal-directed training. Home programmes included goal-directed training and adapted cycling. The comparison group continued usual care. Primary outcomes were gross motor function assessed by the Gross Motor Function Measure (GMFM) and goal performance/satisfaction assessed using the Canadian Occupational Performance Measure (COPM). Secondary outcomes were sit-to-stand and activity capacity, participation in home, school, and community activities, and power output. Linear regression was used to determine the between-group mean difference immediately post-training completion after adjusting for baseline scores. RESULTS: This randomized controlled trial included 21 participants (mean age=10y 3mo, standard deviation [SD]=3y; Gross Motor Function Classification System level: II=7, III=6, IV=8) who were randomized to the intervention (n=11) or usual care group (n=10). Between-group differences at T2 favoured the intervention group for GMFM-88 (mean difference=7.4; 95% confidence interval [CI]: 2.3-12.6; p=0.007), GMFM-66 (mean difference=5.9; 95% CI: 3.1-8.8; p<0.001), COPM performance (mean difference=4.4; 95% CI: 3.9-5.3; p<0.001) and satisfaction (mean difference=5.2; 95% CI: 4.0-6.4; p<0.001). INTERPRETATION: Children with CP achieved meaningful functional improvements after FES cycling, goal-directed training, and adapted cycling training. Cycling programmes for children with CP should be individualized and goal directed.


Assuntos
Ciclismo , Paralisia Cerebral/reabilitação , Terapia por Exercício/métodos , Avaliação de Resultados em Cuidados de Saúde , Adolescente , Criança , Terapia por Exercício/instrumentação , Feminino , Humanos , Masculino
20.
Mater Sci Eng C Mater Biol Appl ; 114: 110995, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32993986

RESUMO

TiO2 nanotubes (TNTs) are a promising bone/dental implant surface modification strategy with enhanced bioactivity and local therapeutic functions. However, inconsistencies related to the understanding of the influence of various TNTs characteristics on Ti implant functions, and the multi-factorial inter-dependence of such characteristics, requires an in-depth Quality by Design (QbD) analysis towards optimizing TNTs-modified implants. To this end, an extensive systematic literature search was undertaken to identify the various TNTs characteristics that may influence implant performance. Subsequently, in order to facilitate a QbD analysis, an expert questionnaire survey was carried out to determine the perceived contribution of various TNTs characteristics on an implant's biological, physicochemical, and mechanical performance. To achieve this goal, the Quality Function Deployment method was employed using symmetrical triangular fuzzy numbers to translate qualitative expert opinion into meaningful quantitative information. The results show that pore diameter, inter-nanotube distance and wall thickness are the TNTs characteristics with the most influential effects on the overall implant performance. This pioneering study evaluates perceived importance of various parameters contributing to TNTs functionality, and represents a step forward in the implementation of QbD strategies towards optimizing nano-engineered Ti implants.


Assuntos
Nanotubos , Próteses e Implantes , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...