Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Differentiation ; 92(3): 102-107, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27262400

RESUMO

Renal fibrosis is a common characteristic of chronic kidney disease (CKD). Aberrant and excessive depositions of extracellular matrix (ECM) proteins in both glomeruli and interstitial regions are typical hallmarks of renal fibrosis and amplify the severity of kidney injury. To date, an approved therapy specifically targeted to renal fibrosis is needed to mitigate or even retard renal fibrosis. Recent findings have identified a unique population of myofibroblasts as a primary source of ECM in scar tissue formation. However, the origin of myofibroblasts in renal fibrosis remains the subject of controversial debates. The advancement in lineage tracing and immunofluorescent microscopy technologies have suggested that myofibroblasts may arise from a number of sources such as activated renal fibroblasts, pericytes, epithelial-to-mesenchymal transition (EMT), endothelial-to-mesenchymal transition (EndoMT), bone marrow derived cells and fibrocytes. Recent studies also indicate that multiple ligands of TGF-ß/Smads are the direct mediators for renal fibrosis. Consistently, inhibition of the TGF-ß/Smads signaling pathway using various strategies significantly reduce renal fibrotic lesions and ameliorate kidney injury, suggesting that targeting the TGF-ß/Smads signaling pathway could be a new strategy for effective therapies. In this review, we will briefly discuss the diverse origins of myofibroblasts and molecular pathways triggering renal fibrosis. Prospective therapeutic approaches based on those molecular mechanisms will hopefully offer exciting insights in the development of new therapeutic interventions for patients in the near future.


Assuntos
Fibroblastos/metabolismo , Fibrose/patologia , Nefropatias/patologia , Rim/metabolismo , Miofibroblastos/patologia , Animais , Transição Epitelial-Mesenquimal/fisiologia , Fibrose/diagnóstico , Humanos , Rim/patologia , Nefropatias/metabolismo
2.
J Am Soc Nephrol ; 27(10): 3093-3104, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26975438

RESUMO

Podocyte depletion is sufficient for the development of numerous glomerular diseases and can be absolute (loss of podocytes) or relative (reduced number of podocytes per volume of glomerulus). Commonly used methods to quantify podocyte depletion introduce bias, whereas gold standard stereologic methodologies are time consuming and impractical. We developed a novel approach for assessing podocyte depletion in whole glomeruli that combines immunofluorescence, optical clearing, confocal microscopy, and three-dimensional analysis. We validated this method in a transgenic mouse model of selective podocyte depletion, in which we determined dose-dependent alterations in several quantitative indices of podocyte depletion. This new approach provides a quantitative tool for the comprehensive and time-efficient analysis of podocyte depletion in whole glomeruli.


Assuntos
Contagem de Células/métodos , Tamanho Celular , Glomérulos Renais/citologia , Podócitos/citologia , Animais , Imageamento Tridimensional , Camundongos
3.
BMC Nephrol ; 16: 152, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26374634

RESUMO

BACKGROUND: Genetic renal diseases (GRD) are a heterogeneous and incompletely understood group of disorders accounting for approximately 10 % of those diagnosed with kidney disease. The advent of Next Generation sequencing and new approaches to disease modelling may allow the identification and validation of novel genetic variants in patients with previously incompletely explained or understood GRD. METHODS/DESIGN: This study will recruit participants in families/trios from a multidisciplinary sub-specialty Renal Genetics Clinic where known genetic causes of GRD have been excluded or where genetic testing is not available. After informed patient consent, whole exome and/or genome sequencing will be performed with bioinformatics analysis undertaken using a customised variant assessment tool. A rigorous process for participant data management will be undertaken. Novel genetic findings will be validated using patient-derived induced pluripotent stem cells via differentiation to renal and relevant extra-renal tissue phenotypes in vitro. A process for managing the risk of incidental findings and the return of study results to participants has been developed. DISCUSSION: This investigator-initiated approach brings together experts in nephrology, clinical and molecular genetics, pathology and developmental biology to discover and validate novel genetic causes for patients in Australia affected by GRD without a known genetic aetiology or pathobiology.


Assuntos
Nefropatias/genética , Humanos , Projetos de Pesquisa , Estudos de Validação como Assunto
4.
Kidney Int ; 88(6): 1323-1335, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26221756

RESUMO

Transforming growth factor-ß1 (TGF-ß1)/Smad signaling has a central role in the pathogenesis of renal fibrosis. Smad3 and Smad4 are pro-fibrotic, while Smad2 is anti-fibrotic. However, these Smads form heterogeneous complexes, the functions of which are poorly understood. Here we studied Smad complex function in renal fibrosis using the mouse model of unilateral ureteric obstruction. Mice heterozygous for Smad3/4 (Smad3/4+/-) exhibited substantial protection from renal fibrosis through day 7 of obstruction, whereas Smad2/3+/- and Smad2/4+/- mice showed only modest protection. Formation of Smad3/Smad4/CDK9 complexes was an early event following obstruction in wild-type mice, which involved nuclear phosphorylation of the linker regions of Smad3. Significantly, Smad3 or Smad4 deficiency decreased the formation of Smad4/CDK9 or Smad3/CDK9 complex, Smad3 linker phosphorylation, and fibrosis but at different degrees. In vitro, TGF-ß1 stimulation of collagen I promoter activity involved formation of Smad3/Smad4/CDK9 complexes, and overexpression of each component gave additive increases in collagen promoter activity. Co-administration of a CDK9 inhibitor and Smad3-specific inhibition achieved better protection from TGF-ß1-induced fibrotic response in vitro and renal interstitial fibrosis in vivo. Thus formation of Smad3/Smad4/CDK9 complex drives renal fibrosis during ureteral obstruction. Formation of this complex represents a novel target for antifibrotic therapies.

5.
Kidney Int ; 88(2): 286-98, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25945408

RESUMO

Signaling by TGF-ß/Smad3 plays a key role in renal fibrosis. As obesity is one of the major risk factors of chronic and end-stage renal disease, we studied the role of Smad3 signaling in the pathogenesis of obesity-related renal disease. After switching to a high fat diet, the onset of Smad3 C-terminal phosphorylation, increase in albuminuria, and the early stages of peripheral and renal insulin resistance occurred at 1 day, and 4 and 8 weeks, respectively, in C57BL/6 mice. The loss of synaptopodin, a functional marker of podocytes, and phosphorylation of the Smad3 linker region (T179 and S213) appeared after 4 weeks of the high fat diet. This suggests a temporal pattern of Smad3 signaling activation leading to kidney injury and subsequent insulin resistance in the development of obesity-related renal disease. In vivo, Smad3 knockout attenuated the high fat diet-induced proteinuria, renal fibrosis, overall podocyte injury, and mitochondrial dysfunction in podocytes. In vitro palmitate caused a rapid activation of Smad3 in 30 min, loss of synaptopodin in 2 days, and impaired insulin signaling in 3 days in isolated mouse podocytes. Blockade of either Smad3 phosphorylation by SIS3 (a Smad3 inhibitor) or T179 phosphorylation by flavopiridol (a CDK9 inhibitor) prevented the palmitate-induced loss of synaptopodin and mitochondrial function in podocytes. Thus, Smad3 signaling plays essential roles in obesity-related renal disease and may be a novel therapeutic target.


Assuntos
Obesidade/complicações , Obesidade/metabolismo , Podócitos/metabolismo , Transdução de Sinais , Proteína Smad3/deficiência , Animais , Células Cultivadas , Gorduras na Dieta/administração & dosagem , Inibidores Enzimáticos/farmacologia , Fibrose , Flavonoides/farmacologia , Técnicas de Silenciamento de Genes , Insulina/metabolismo , Resistência à Insulina , Isoquinolinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ácido Palmítico/farmacologia , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Podócitos/efeitos dos fármacos , Fatores de Proteção , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirróis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/genética
6.
Nephrology (Carlton) ; 20(5): 309-11, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25605230

RESUMO

The most common cause of paediatric end-stage kidney disease results from congenital anomalies of the kidney and urinary tract (CAKUT). Genetic manipulation in mice has provided insight into the developmental events that give rise to the broad spectrum of malformations associated with CAKUT. Despite the increase in the number of identified CAKUT-causing genes, the underlying genetic cause for the majority of patients with CAKUT remains unknown. In this mini-review, we provide an overview of the genetic causes of CAKUT based on current mouse mutant models, as well as next-generation sequencing approaches in humans that are helping to bridge the gaps in our understanding.


Assuntos
Rim/anormalidades , Anormalidades Urogenitais/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Mutação/genética
7.
Pediatr Nephrol ; 30(3): 487-95, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25270717

RESUMO

BACKGROUND: The most common cause of end-stage renal disease in children can be attributed to congenital anomalies of the kidney and urinary tract (CAKUT). Despite this high incidence of disease, the genetic mutations responsible for the majority of CAKUT cases remain unknown. METHODS: To identify novel genomic regions associated with CAKUT, we screened 178 children presenting with the entire spectrum of structural anomalies associated with CAKUT for submicroscopic chromosomal imbalances (deletions or duplications) using single-nucleotide polymorphism (SNP) microarrays. RESULTS: Copy-number variation (CNV) was detected in 10.1 % (18/178) of the patients; in 6.2 % of the total cohort, novel duplications or deletions of unknown significance were identified, and the remaining 3.9 % harboured CNV of known pathogenicity. CNVs were inherited in 90 % (9/10) of the families tested. In this cohort, patients diagnosed with multicystic dysplastic kidney (30 %) and posterior urethral valves (24 %) had a higher incidence of CNV. CONCLUSIONS: The genes contained in the altered genomic regions represent novel candidates for CAKUT. This study has demonstrated that a significant proportion of patients with CAKUT harbour submicroscopic chromosomal imbalances, warranting screening in clinics for CNV.


Assuntos
Variações do Número de Cópias de DNA , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Polimorfismo de Nucleotídeo Único
8.
Am J Pathol ; 184(4): 944-952, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24485922

RESUMO

Transforming growth factor-ß (TGF-ß) promotes tissue fibrosis via receptor-mediated phosphorylation of the receptor-activated Smad2/3, together with Smad4. Of these, Smad3 plays a major profibrotic role in mouse models of tissue fibrosis. Transcriptional activity of the Smad3 protein is regulated by phosphorylation of residues in the C-terminal domain and the linker region. Herein, we examined the role of a novel phosphorylation site within the MH2 domain (T388) in the regulation of Smad3 activity. Confocal microscopy using an Smad3 phosphorylated T388-specific antibody identified phosphorylation of Smad3 T388 in myofibroblasts and tubular epithelial cells in human focal and segmental glomerulosclerosis and mouse models of unilateral ureteric obstruction and diabetic nephropathy, whereas phosphorylated T388 was largely absent in normal kidney. In vitro, TGF-ß1 induced phosphorylation of Smad3 T388 in a biphasic pattern. A point mutation of T388/V in an Smad3 construct demonstrated that phosphorylation of T388 promotes Smad3 binding to Smad4 and CDK8, but was not necessary for nuclear translocation. Furthermore, T388 phosphorylation was required for TGF-ß-induced collagen I gene promoter activity and extracellular matrix production in cultured fibroblasts. In conclusion, our study identifies phosphorylation of T388 in the Smad3 MH2 domain as an important mechanism that regulates the profibrotic TGF-ß/Smad3 signaling pathway, which has direct relevance to human and experimental fibrotic kidney disease.


Assuntos
Nefropatias/metabolismo , Transdução de Sinais/fisiologia , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Western Blotting , Fibrose/metabolismo , Humanos , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Fosforilação , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Mol Syndromol ; 5(6): 276-86, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25565927

RESUMO

The 22q11.2 deletion syndrome (22q11DS) is thought to be a contiguous gene syndrome caused by haploinsufficiency for a variable number of genes with overlapping function during the development of the craniofacial, pharyngeal and cardiac structures. The complexity of genetic and developmental anomalies resulting in 22q11DS has made attributing causation to specific genes difficult. The CRKL gene resides within the common 3-Mb region, most frequently affected in 22q11DS, and has been shown to play an essential role in the development of tissues affected in 22q11DS. Here, we report the characterisation of a mouse strain we named 'snoopy', harbouring a novel Crkl splice-site mutation that results in a loss of Crkl expression. The snoopy strain exhibits a variable phenotype that includes micrognathia, pharyngeal occlusion, aglossia and holoprosencephaly, and altered retinoic acid and endothelin signalling. Together, these features are reminiscent of malformations occurring in auriculocondylar syndrome and agnathia-otocephaly complex, 2 conditions not previously associated with the CRKL function. Comparison of the features of a cohort of patients harbouring small 22q11.2 deletions centred over the CRKL gene, but sparing TBX1, highlights the role of CRKL in contributing to the craniofacial features of 22q11DS. These analyses demonstrate the central role of Crkl in regulating signalling events in the developing oropharyngeal complex and its potential to contribute to dysmorphology.

10.
PLoS One ; 8(10): e76342, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24143185

RESUMO

Fras1 is an extracellular matrix associated protein with essential roles in adhesion of epithelia and mesenchyme during early embryonic development. The adhesive function of Fras1 is achieved through interaction with a group of related proteins, Frem 1-3, and a cytoplasmic adaptor protein Grip1. Mutation of each of these proteins results in characteristic epithelial blistering and have therefore become known as "blebs" proteins. Human Fraser syndrome presents with a similar phenotype and the blebs mice have been instrumental in identification of the genetic basis of Fraser syndrome. We have identified a new ENU-induced blebs allele resulting from a novel missense mutation in Fras1. The resulting mouse strain, blood filled blisters (bfb), presents with a classic blebs phenotype but does not exhibit embryonic lethality typical of other blebs mutants and in addition, we report novel palate and sternal defects. Analysis of the bfb phenotype confirms the presence of epithelial-mesenchymal adhesion defects but also supports the emerging role of blebs proteins in regulating signalling during organogenesis. The bfb strain provides new opportunities to investigate the role of Fras1 in development.


Assuntos
Proteínas da Matriz Extracelular/genética , Mutagênese , Mutação de Sentido Incorreto , Alelos , Sequência de Aminoácidos , Animais , Proteínas da Matriz Extracelular/química , Feminino , Humanos , Camundongos , Dados de Sequência Molecular , Organogênese/genética , Fenótipo
11.
PLoS Genet ; 9(8): e1003746, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24009529

RESUMO

Cilia are architecturally complex organelles that protrude from the cell membrane and have signalling, sensory and motility functions that are central to normal tissue development and homeostasis. There are two broad categories of cilia; motile and non-motile, or primary, cilia. The central role of primary cilia in health and disease has become prominent in the past decade with the recognition of a number of human syndromes that result from defects in the formation or function of primary cilia. This rapidly growing class of conditions, now known as ciliopathies, impact the development of a diverse range of tissues including the neural axis, craniofacial structures, skeleton, kidneys, eyes and lungs. The broad impact of cilia dysfunction on development reflects the pivotal position of the primary cilia within a signalling nexus involving a growing number of growth factor systems including Hedgehog, Pdgf, Fgf, Hippo, Notch and both canonical Wnt and planar cell polarity. We have identified a novel ENU mutant allele of Ift140, which causes a mid-gestation embryonic lethal phenotype in homozygous mutant mice. Mutant embryos exhibit a range of phenotypes including exencephaly and spina bifida, craniofacial dysmorphism, digit anomalies, cardiac anomalies and somite patterning defects. A number of these phenotypes can be attributed to alterations in Hedgehog signalling, although additional signalling systems are also likely to be involved. We also report the identification of a homozygous recessive mutation in IFT140 in a Jeune syndrome patient. This ENU-induced Jeune syndrome model will be useful in delineating the origins of dysmorphology in human ciliopathies.


Assuntos
Proteínas de Transporte/genética , Comunicação Celular/genética , Cílios/patologia , Síndrome de Ellis-Van Creveld/genética , Desenvolvimento Embrionário/genética , Animais , Polaridade Celular , Cílios/genética , Modelos Animais de Doenças , Síndrome de Ellis-Van Creveld/patologia , Proteínas Hedgehog/genética , Humanos , Camundongos , Mutação , Transdução de Sinais
12.
PLoS One ; 8(6): e67471, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840712

RESUMO

Resolvin D1 (RvD1) is a lipid-derived mediator generated during the resolution inflammation. While the immunoresolvent effects of Resolvins have been extensively studied in leukocytes, actions of Resolvins on intrinsic kidney cells have received little attention. The podocyte plays a central role in glomerular function, and podocyte damage can lead to proteinuria and glomerulosclerosis. This study examined whether RvD1 has renoprotective effects upon podocytes. We investigated a mouse model of adriamycin (ADR) nephropathy featuring rapid induction of podocyte damage and proteinuria followed by glomerulosclerosis. We identified a progressive loss of synaptopodin expression over a 28 day time-course of ADR nephropathy which was associated with increased acetylation of 14-3-3ß and reduced synaptopodin phosphorylation. Groups of mice were given once daily RvD1 treatment (4 ng/g body weight/day) starting either 30 min (early treatment) or 14 days (late treatment) after ADR injection and continued until mice were killed on day 28. Early, but not late, RvD1 treatment attenuated ADR-induced proteinuria, glomerulosclerosis and tubulointerstitial fibrosis, modified macrophages from an M1 to M2 phenotype. Early RvD1 treatment prevented the down-regulation of synaptopodin expression and changes in 14-3-3ß acetylation and synaptopodin phosphorylation. In a podocyte cell line, RvD1 was shown to prevent rapid TNF-α-induced down-regulation of synaptopodin expression. In transfection studies, TNF-α-induced a decrease in synaptopodin phosphorylation and an increase in acetylation of 14-3-3ß, resulting in disassociation between 14-3-3ß and synaptopodin. RvD1 prevented TNF-α induced post-translational modification of synaptopodin and 14-3-3ß proteins, and maintained the synaptopodin/14-3-3ß interaction. Furthermore, replacement of lysine K51, or K117+K122 in 14-3-3ß with glutamine, to mimic lysine acetylation, significantly reduced the interaction between 14-3-3ß and synaptopodin. In conclusion, our studies provide the first evidence that RvD1 can protect against podocyte damage by preventing down-regulation of synaptopodin through inhibition of 14-3-3ß/synaptopodin dissociation. RvD1 treatment may have potential application in the treatment of chronic kidney disease.


Assuntos
Proteínas 14-3-3/genética , Acetilação/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Doxorrubicina/farmacologia , Nefropatias/tratamento farmacológico , Glomérulos Renais/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Proteínas 14-3-3/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Células HEK293 , Humanos , Nefropatias/induzido quimicamente , Nefropatias/genética , Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Fosforilação/genética , Podócitos/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
PLoS One ; 8(3): e55429, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23469164

RESUMO

BACKGROUND: Mice harbouring gene mutations that cause phenotypic abnormalities during organogenesis are invaluable tools for linking gene function to normal development and human disorders. To generate mouse models harbouring novel alleles that are involved in organogenesis we conducted a phenotype-driven, genome-wide mutagenesis screen in mice using the mutagen N-ethyl-N-nitrosourea (ENU). METHODOLOGY/PRINCIPAL FINDINGS: ENU was injected into male C57BL/6 mice and the mutations transmitted through the germ-line. ENU-induced mutations were bred to homozygosity and G3 embryos screened at embryonic day (E) 13.5 and E18.5 for abnormalities in limb and craniofacial structures, skin, blood, vasculature, lungs, gut, kidneys, ureters and gonads. From 52 pedigrees screened 15 were detected with anomalies in one or more of the structures/organs screened. Using single nucleotide polymorphism (SNP)-based linkage analysis in conjunction with candidate gene or next-generation sequencing (NGS) we identified novel recessive alleles for Fras1, Ift140 and Lig1. CONCLUSIONS/SIGNIFICANCE: In this study we have generated mouse models in which the anomalies closely mimic those seen in human disorders. The association between novel mutant alleles and phenotypes will lead to a better understanding of gene function in normal development and establish how their dysfunction causes human anomalies and disease.


Assuntos
Anormalidades Congênitas/genética , Modelos Animais de Doenças , Etilnitrosoureia/toxicidade , Exoma/efeitos dos fármacos , Camundongos Endogâmicos C57BL/genética , Mutagênicos/toxicidade , Polimorfismo de Nucleotídeo Único , Alelos , Animais , Anormalidades Congênitas/embriologia , Anormalidades Congênitas/etiologia , DNA Ligase Dependente de ATP , DNA Ligases/genética , Proteínas da Matriz Extracelular/genética , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Mutação em Linhagem Germinativa/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Fatores de Determinação Direita-Esquerda/genética , Masculino , Camundongos , Mutagênese , Fenótipo
14.
PLoS One ; 8(1): e55027, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23359116

RESUMO

The role of podocytes in the development and progression of glomerular disease has been extensively investigated in the past decade. However, the importance of glomerular endothelial cells in the pathogenesis of proteinuria and glomerulosclerosis has been largely ignored. Recent studies have demonstrated that endothelial nitric oxide synthatase (eNOS) deficiency exacerbates renal injury in anti-GBM and remnant kidney models and accelerates diabetic kidney damage. Increasing evidence also demonstrates the importance of the glomerular endothelium in preventing proteinuria. We hypothesize that endothelial dysfunction can initiate and promote the development and progression of glomerulopathy. Administration of adriamycin (ADR) to C57BL/6 mice, normally an ADR resistant strain, with an eNOS deficiency induced overt proteinuria, severe glomerulosclerosis, interstitial fibrosis and inflammation. We also examined glomerular endothelial cell and podocyte injury in ADR-induced nephropathy in Balb/c mice, an ADR susceptible strain, by immunostaining, TUNEL and Western blotting. Interestingly, down-regulation of eNOS and the appearance of apoptotic glomerular endothelial cells occurred as early as 24 hours after ADR injection, whilst synaptopodin, a functional podocyte marker, was reduced 7 days after ADR injection and coincided with a significant increase in the number of apoptotic podocytes. Furthermore, conditioned media from mouse microvascular endothelial cells over-expressing GFP-eNOS protected podocytes from TNF-α-induced loss of synaptopodin. In conclusion, our study demonstrated that endothelial dysfunction and damage precedes podocyte injury in ADR-induced nephropathy. Glomerular endothelial cells may protect podocytes from inflammatory insult. Understanding the role of glomerular endothelial dysfunction in the development of kidney disease will facilitate in the design of novel strategies to treat kidney disease.


Assuntos
Doxorrubicina/toxicidade , Endotélio Vascular/patologia , Glomérulos Renais/patologia , Rim/efeitos dos fármacos , Podócitos/patologia , Animais , Western Blotting , Meios de Cultivo Condicionados , Endotélio Vascular/enzimologia , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia Confocal , Óxido Nítrico Sintase Tipo III/metabolismo
15.
Am J Physiol Renal Physiol ; 303(2): F253-8, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22573381

RESUMO

While low nephron number is associated with increased risk of developing cardiovascular and renal disease, the functional consequences of a high nephron number are unknown. We tested the hypothesis that a high nephron number provides protection against hypertensive and renal insults. Mean arterial pressure (MAP) and renal function were characterized in male wild-type (WT) and transforming growth factor-ß2 heterozygous (Tgfb2(+/-)) mice under basal conditions and following a chronic high-salt diet. Kidneys were collected for unbiased stereological analysis. Baseline MAP and renal function were indistinguishable between genotypes. The chronic high-salt diet (5% NaCl for 4 wk followed by 8% NaCl for 4 wk) led to similar step-wise increases in urine volume, Na(+) excretion, and albuminuria in the genotypes. The 5% NaCl diet induced modest and similar increases in MAP (3.5 ± 1.6 and 3.4 ± 0.8 mmHg in WT and Tgfb2(+/-), respectively). After the step up to the 8% NaCl diet, MAP increased further in WT (+15.9 ± 5.1 mmHg), but not Tgfb2(+/-) (-0.1 ± 1.0 mmHg), mice. Nephron number was 30% greater in Tgfb2(+/-) than WT mice and was not affected by the chronic high-salt diet. Mean glomerular volume was lower in Tgfb2(+/-) than WT mice, and the chronic high-salt diet induced significant glomerular hypertrophy. In a separate cohort of mice, an acute, 7-day, 8% NaCl diet induced similar rises in MAP in the genotypes. This is the first study to examine the physiological characteristics of a model of high nephron number, and the findings are consistent with this phenotype providing protection against chronic, but not acute, hypertensive insults.


Assuntos
Hipertensão/induzido quimicamente , Hipertensão/prevenção & controle , Néfrons/citologia , Néfrons/fisiologia , Cloreto de Sódio/efeitos adversos , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Contagem de Células , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Genótipo , Heterozigoto , Hipertensão/patologia , Masculino , Camundongos , Camundongos Mutantes , Néfrons/efeitos dos fármacos , Fenótipo , Cloreto de Sódio/farmacologia , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/fisiologia
16.
J Urol ; 186(4): 1537-44, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21855915

RESUMO

PURPOSE: Periostin is a secreted extracellular matrix protein that is differentially expressed in the developing kidney. We analyzed the temporal-spatial expression of periostin in the developing kidney and ureter as well as its roles in ureter branching morphogenesis, nephrogenesis and ureter development. MATERIALS AND METHODS: RNA in situ hybridization and immunofluorescence histochemistry were used to investigate the expression of periostin, αv integrin and α-smooth muscle actin during mouse renal and ureteral development. Metanephric explants were cultured in the presence of recombinant periostin, and ureteral branch points/tips and the glomerular number were quantified. Explants were also cultured in the presence of exogenous bone morphogenetic protein 4 and the effect on periostin mRNA levels was determined by quantitative real-time polymerase chain reaction. RESULTS: Periostin expression was observed in the mesenchyme surrounding the kidney and ureter, renal stroma, metanephric mesenchyme, ureter epithelium and developing nephrons. At embryonic day 15.5 periostin and αv integrin, a common subunit of periostin receptors, were co-expressed in smooth muscle cells of the ureter, renal artery and intrarenal arteries. Bone morphogenetic protein 4 up-regulated periostin mRNA expression and exogenous periostin inhibited branching morphogenesis and glomerular number. CONCLUSIONS: Bone morphogenetic protein 4 which inhibits ureteral branching morphogenesis and promotes smooth muscle cell migration in the ureter up-regulated periostin mRNA expression in the developing kidney. Ureteral smooth muscle cells express periostin and αv integrin. Periostin inhibited ureteral branching morphogenesis and glomerular number. Together these results suggest that periostin and bone morphogenetic protein 4 may have a role in branching morphogenesis, nephrogenesis and possibly smooth muscle cell migration.


Assuntos
Moléculas de Adesão Celular/fisiologia , Rim/embriologia , Ureter/embriologia , Animais , Proteína Morfogenética Óssea 4/fisiologia , Moléculas de Adesão Celular/metabolismo , Imuno-Histoquímica , Integrina alfaVbeta3/metabolismo , Rim/metabolismo , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese , Técnicas de Cultura de Órgãos , Receptores de Vitronectina/metabolismo , Ureter/metabolismo
17.
PLoS One ; 6(4): e18723, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21533152

RESUMO

Betaglycan is an accessory receptor for the transforming growth factor-ß (TGFß) superfamily, many members of which play key roles in kidney development. The purpose of this study was to define the role of this co-receptor on fetal murine kidney development. Stereological examination of embryonic and adult betaglycan heterozygous kidneys revealed augmented nephron number relative to littermate controls. Fetal heterozygous kidneys exhibited accelerated ureteric branching, which correlated with augmented nephron development at embryonic day (e) 15.5. In contrast, betaglycan null kidneys exhibited renal hypoplasia from e13.5 and reduced nephron number at e15.5. Quantitative real-time PCR analysis of e11.5-e14.5 kidneys demonstrated that heterozygous kidneys exhibited a transient decrease in Bmp4 expression at e11.5 and a subsequent cascade of changes in the gene regulatory network that governs metanephric development, including significant increases in Pax2, Eya1, Gdnf, Ret, Wnt4, and Wt1 expression. Conversely, gene expression in null kidneys was normal until e13.5, when significant reductions were detected in the expression of Bmp4 as well as other key metanephric regulatory genes. Tgfb1 and Tgfb2 mRNA expression was down-regulated in both nulls and heterozygotes at e13.5 and e14.5. The opposing morphological and molecular phenotypes in betaglycan heterozygote and null mutants demonstrate that the levels of betaglycan must be tightly regulated for optimal kidney development.


Assuntos
Néfrons/fisiologia , Proteoglicanas/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Animais , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Transdução de Sinais
18.
Diabetes ; 59(10): 2612-24, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20682692

RESUMO

OBJECTIVE: A multicenter, controlled trial showed that early blockade of the renin-angiotensin system in patients with type 1 diabetes and normoalbuminuria did not retard the progression of nephropathy, suggesting that other mechanism(s) are involved in the pathogenesis of early diabetic nephropathy (diabetic nephropathy). We have previously demonstrated that endothelial-mesenchymal-transition (EndoMT) contributes to the early development of renal interstitial fibrosis independently of microalbuminuria in mice with streptozotocin (STZ)-induced diabetes. In the present study, we hypothesized that blocking EndoMT reduces the early development of diabetic nephropathy. RESEARCH DESIGN AND METHODS: EndoMT was induced in a mouse pancreatic microvascular endothelial cell line (MMEC) in the presence of advanced glycation end products (AGEs) and in the endothelial lineage-traceble mouse line Tie2-Cre;Loxp-EGFP by administration of AGEs, with nonglycated mouse albumin serving as a control. Phosphorylated Smad3 was detected by immunoprecipitation/Western blotting and confocal microscopy. Blocking studies using receptor for AGE siRNA and a specific inhibitor of Smad3 (SIS3) were performed in MMECs and in STZ-induced diabetic nephropathy in Tie2-Cre;Loxp-EGFP mice. RESULTS: Confocal microscopy and real-time PCR demonstrated that AGEs induced EndoMT in MMECs and in Tie2-Cre;Loxp-EGFP mice. Immunoprecipitation/Western blotting showed that Smad3 was activated by AGEs but was inhibited by SIS3 in MMECs and in STZ-induced diabetic nephropathy. Confocal microscopy and real-time PCR further demonstrated that SIS3 abrogated EndoMT, reduced renal fibrosis, and retarded progression of nephropathy. CONCLUSIONS: EndoMT is a novel pathway leading to early development of diabetic nephropathy. Blockade of EndoMT by SIS3 may provide a new strategy to retard the progression of diabetic nephropathy and other diabetes complications.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/prevenção & controle , Proteína Smad3/genética , Animais , Diabetes Mellitus Experimental/prevenção & controle , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Proteínas da Matriz Extracelular/fisiologia , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/fisiologia , Rim/fisiologia , Rim/fisiopatologia , Masculino , Mesoderma/fisiologia , Camundongos , Microscopia Confocal , Pâncreas/irrigação sanguínea , Reação em Cadeia da Polimerase , Proteína-Lisina 6-Oxidase/fisiologia , RNA/genética , RNA/isolamento & purificação , RNA Interferente Pequeno/genética , Receptor para Produtos Finais de Glicação Avançada , Receptor TIE-2/fisiologia , Receptores Imunológicos/fisiologia , Albumina Sérica/farmacologia , Proteína Smad2/genética , Proteína Smad3/antagonistas & inibidores , Estreptozocina
19.
Differentiation ; 79(4-5): 272-84, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20163909

RESUMO

Many members of the transforming growth factor-beta (TGF-beta) superfamily have been shown to be important regulators of metanephric development. In this study, we characterized the effect of TGF-beta2 on metanephric development. Rat and mouse metanephroi cultured in the presence of exogenous TGF-beta2 for up to 15 days were small, and contained rudimentary ureteric branches and few glomeruli. These metanephroi were mostly comprised of mesenchymal cells, with two cell populations (designated Type 1 and Type 2 cells) evident. Type 1 cells were only observed when TGF-beta2 was added from the commencement of culture, they resembled chondroblasts and were Alcian Blue and Col IIB positive. Type 2 cells were observed whenever TGF-beta2 was added to the media, formed a band at the periphery of the explants consisting of 5-10 layers of spindle-shaped cells, and were alpha-smooth muscle actin positive. Molecular and RNA in situ hybridization analysis of metanephroi cultured in the presence of TGF-beta2 for 6 days demonstrated that Type 1 and 2 cells were negative for Pax2, WT1, GDNF and FoxD1. Gene expression profiling demonstrated an upregulation of chondrocyte, myogenic and stromal genes, some of which were identified as markers of Type 1 and Type 2 cells. In addition, TGF-beta2 was capable of maintaining the survival of mouse isolated metanephric mesenchyme (iMM) in the absence of serum or inductive signals from the ureteric epithelium. TGF-beta2 also induced the differentiation of iMM into Type 1 and 2 cells. The presence of chondrocytes and muscle in these cultures is reminiscent of the cell types found in some Wilms' tumors. These studies demonstrate that TGF-beta2 is capable of differentiating metanephric mesenchyme away from a renal cell fate.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Condrócitos/fisiologia , Rim , Mesoderma , Células Estromais/fisiologia , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Actinas/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula , Células Cultivadas , Condrócitos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Rim/anatomia & histologia , Rim/efeitos dos fármacos , Rim/fisiologia , Mesoderma/citologia , Mesoderma/efeitos dos fármacos , Mesoderma/fisiologia , Camundongos , Dados de Sequência Molecular , Ratos , Ratos Sprague-Dawley , Células Estromais/citologia
20.
Nephron Exp Nephrol ; 111(2): e42-50, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19142025

RESUMO

UNLABELLED: 17beta-Estradiol, the most potent circulating estrogen, has been shown to greatly impact on the development and formation of tissues of the urogenital tract. The adult kidney has previously been shown to be highly responsive to 17beta-estradiol stimulation. However, the direct effect of 17beta-estradiol on kidney development remains unclear. AIM: To investigate the direct effect of 17beta-estradiol on male and female metanephric kidney development. METHODS: Whole embryonic-day-12.5 (E12.5) C57Bl/6 male and female mouse metanephroi were cultured in the presence of varying concentrations of 17beta-estradiol (0.1-5.0 nM) for 72 h. Metanephric development was assessed using immunofluorescence labeling techniques. The real-time polymerase chain reaction was used to investigate estrogen receptor-alpha (ERalpha), glial-cell-line-derived neurotrophic factor (GDNF) and its associated receptor cRET, transforming growth factor-beta (TGFbeta1), TGFbeta2 and TGFbeta3 mRNA expression levels. RESULTS: ERalpha was present in developing metanephroi at E12.5; however, ERbeta was absent. No significant sex difference in ERalpha mRNA expression was observed. Significant increases in the number of ureteric branch points, terminal tips and developing glomeruli were observed in female metanephroi cultured in the presence of 1.0 and 5.0 nM 17beta-estradiol. Conversely, no significant effect was observed in male metanephroi cultured with 17beta-estradiol. GDNF and cRET mRNA expression was increased in both male and female metanephroi, whilst TGFbeta1 and TGFbeta2 mRNA expression was decreased following culture in the presence of 17beta-estradiol. CONCLUSION: This study is the first to establish that the mouse metanephros displays a sexual dimorphism in response to specific concentrations of estrogens.


Assuntos
Estradiol/administração & dosagem , Rim/efeitos dos fármacos , Rim/crescimento & desenvolvimento , Caracteres Sexuais , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...