Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Int J Part Ther ; 9(1): 12-17, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774490

RESUMO

Purpose: Cranial radiation therapy remains an integral component of curative treatment for pediatric patients with brain tumors. Proton beam radiation therapy (PBT) can limit collateral radiation dose to surrounding normal tissue, thus reducing off-target exposure while maintaining appropriate tumor coverage. While PBT offers significant advantages over photon therapy for pediatric patients with intracranial malignancies, cases of brainstem necrosis after PBT have raised concerns that PBT may pose an increased risk of necrosis over photon therapy. We investigated the incidence of brainstem necrosis at our institution in children treated with PBT for intracranial malignancies. Patients and Methods: Patients with pediatric brain tumor treated with passively scattered PBT, using a gantry-mounted, synchrocyclotron single-vault system between 2013 and 2018, were retrospectively reviewed. Inclusion criteria included patients 21 years of age or younger who received a minimum 0.1 cm3 maximum brainstem dose of 50 Gray relative biological effectiveness (GyRBE). Patients were assessed for "central nervous system necrosis" in the brainstem per the Common Terminology Criteria for Adverse Events (CTCAE), version 5.0 (US National Cancer Institute, Bethesda, Maryland) criteria. Results: Fifty-eight patients were included for analysis. The median age was 10.3 years. Twenty-one (36.2%) patients received craniospinal irradiation. Thirty-four (58.6%) patients received chemotherapy. The median prescription radiation dose was 54 GyRBE. Regarding published dosimetric constraints used at 3 separate proton centers, the goal brainstem D50% <52 GyRBE was exceeded in 23 (40%) patients, but the brainstem Dmax <58 GyRBE was not exceeded in any patients. No patient experienced grade ≥2 brainstem injury. One patient demonstrated radiographic changes consistent with grade 1 toxicity. This patient had myeloablative chemotherapy with tandem stem cell rescue before PBT. Conclusion: Our data demonstrates a low risk of any brainstem injury in children treated with passively scattered PBT using a single-vault synchrocyclotron.

2.
Int J Radiat Oncol Biol Phys ; 106(3): 639-647, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31983560

RESUMO

PURPOSE: We sought to develop a quality surveillance program for approximately 15,000 US veterans treated at the 40 radiation oncology facilities at the Veterans Affairs (VA) hospitals each year. METHODS AND MATERIALS: State-of-the-art technologies were used with the goal to improve clinical outcomes while providing the best possible care to veterans. To measure quality of care and service rendered to veterans, the Veterans Health Administration established the VA Radiation Oncology Quality Surveillance program. The program carries forward the American College of Radiology Quality Research in Radiation Oncology project methodology of assessing the wide variation in practice pattern and quality of care in radiation therapy by developing clinical quality measures (QM) used as quality indices. These QM data provide feedback to physicians by identifying areas for improvement in the process of care and identifying the adoption of evidence-based recommendations for radiation therapy. RESULTS: Disease-site expert panels organized by the American Society for Radiation Oncology (ASTRO) defined quality measures and established scoring criteria for prostate cancer (intermediate and high risk), non-small cell lung cancer (IIIA/B stage), and small cell lung cancer (limited stage) case presentations. Data elements for 1567 patients from the 40 VA radiation oncology practices were abstracted from the electronic medical records and treatment management and planning systems. Overall, the 1567 assessed cases passed 82.4% of all QM. Pass rates for QM for the 773 lung and 794 prostate cases were 78.0% and 87.2%, respectively. Marked variations, however, were noted in the pass rates for QM when tumor site, clinical pathway, or performing centers were separately examined. CONCLUSIONS: The peer-review protected VA-Radiation Oncology Surveillance program based on clinical quality measures allows providers to compare their clinical practice to peers and to make meaningful adjustments in their personal patterns of care unobtrusively.


Assuntos
Institutos de Câncer/normas , Hospitais de Veteranos/normas , Desenvolvimento de Programas , Garantia da Qualidade dos Cuidados de Saúde/normas , Radioterapia (Especialidade)/normas , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Medicina Baseada em Evidências/normas , Humanos , Neoplasias Pulmonares/radioterapia , Masculino , Revisão por Pares , Avaliação de Programas e Projetos de Saúde/normas , Neoplasias da Próstata/radioterapia , Garantia da Qualidade dos Cuidados de Saúde/métodos , Melhoria de Qualidade/normas , Indicadores de Qualidade em Assistência à Saúde/normas , Carcinoma de Pequenas Células do Pulmão/radioterapia , Sociedades Médicas/normas , Estados Unidos , Veteranos
3.
J Appl Clin Med Phys ; 19(1): 73-85, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29125224

RESUMO

Normalize the response of electronic portal imaging device (EPID) is the first step toward an EPID-based standardization of Linear Accelerator (linac) dosimetry quality assurance. In this study, we described an approach to generate two-dimensional (2D) pixel sensitivity maps (PSM) for EPIDs response normalization utilizing an alternative beam and dark-field (ABDF) image acquisition technique and large overlapping field irradiations. The automated image acquisition was performed by XML-controlled machine operation and the PSM was generated based on a recursive calculation algorithm for Varian linacs equipped with aS1000 and aS1200 imager panels. Cross-comparisons of normalized beam profiles and 1.5%/1.5 mm 1D Gamma analysis was adopted to quantify the improvement of beam profile matching before and after PSM corrections. PSMs were derived for both photon (6, 10, 15 MV) and electron (6, 20 MeV) beams via proposed method. The PSM-corrected images reproduced a horn-shaped profile for photon beams and a relative uniform profiles for electrons. For dosimetrically matched linacs equipped with aS1000 panels, PSM-corrected images showed increased 1D-Gamma passing rates for all energies, with an average 10.5% improvement for crossline and 37% for inline beam profiles. Similar improvements in the phantom study were observed with a maximum improvement of 32% for 15 MV and 22% for 20 MeV. The PSM value showed no significant change for all energies over a 3-month period. In conclusion, the proposed approach correct EPID response for both aS1000 and aS1200 panels. This strategy enables the possibility to standardize linac dosimetry QA and to benchmark linac performance utilizing EPID as the common detector.


Assuntos
Algoritmos , Equipamentos e Provisões Elétricas , Aceleradores de Partículas/instrumentação , Aceleradores de Partículas/normas , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Fótons , Controle de Qualidade , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...