Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(42): 25773-25787, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36263762

RESUMO

350 nm and 550 nm thick InGaN/GaN bilayers were irradiated with different energies (from ∼82 to ∼38 MeV) of xenon (129Xe) ions and different fluences of 1.2 GeV lead (208Pb) ions, respectively. The radiation effects of the swift heavy ions' (SHIs) bombardment were investigated using Rutherford Backscattering Spectrometry in Channeling mode (RBS/C), X-Ray Diffraction (XRD), and micro-Raman spectroscopy. To assess damage profiles, the RBS/C analysis was followed by Monte Carlo simulations using the McChasy code, revealing that InGaN is more susceptible to irradiation damage than GaN. Moreover, the simulations suggest that both randomly displaced atoms (possibly due to partial amorphization) and dislocation loops are formed. The elastic response to radiation was estimated by measuring the expansion of the c-lattice parameter. XRD revealed the presence of strain even in low fluence samples where only a small fraction of the sample volume suffered direct SHI impacts. Micro-Raman suggests that for low defect concentrations, it is dominantly biaxial, while for high defect concentrations, the simultaneous increase of hydrostatic and biaxial occurs. As a driving force of the lattice expansion, we point out the Poisson effect resulting from the pressure exerted by the SHI tracks on the surrounding undamaged crystal structure.

2.
Phys Chem Chem Phys ; 24(33): 19705-19715, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35811566

RESUMO

Understanding the plasmonic coupling between a set of metallic nanoparticles (NPs) in a 2D array, and how a substrate affects such coupling, is fundamental for the development of optimized optoelectronic structures. Here, a simple semi-analytical procedure based on discrete dipole approximation (DDA) is reported to simulate the far-field and near-field properties of arrays of NPs, considering the coupling between particles, and the effect of the presence of a semiconductor substrate based on the image dipole approach. The method is validated for Ag NP dimers and single Ag NPs on a gallium nitride (GaN) substrate, a semiconductor widely used in optical devices, by comparison with the results obtained by the finite element method (FEM), indicating a good agreement in the weak coupling regime. Next, the method is applied to square and random arrays of Ag NPs on a GaN substrate. The increase in the surface density of NPs on a GaN substrate mainly results in a redshift of the dipolar resonance frequency and an increase in the near-field enhancement. This model, based on a single dipole approach, grants very low computational times, representing an advantage to predict the optical properties of large NP arrays on a semiconductor substrate for different applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...