Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 151: 213429, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37148597

RESUMO

The loss of the myelin sheath insulating axons is the hallmark of demyelinating diseases. These pathologies often lead to irreversible neurological impairment and patient disability. No effective therapies are currently available to promote remyelination. Several elements contribute to the inadequacy of remyelination, thus understanding the intricacies of the cellular and signaling microenvironment of the remyelination niche might help us to devise better strategies to enhance remyelination. Here, using a new in vitro rapid myelinating artificial axon system based on engineered microfibres, we investigated how reactive astrocytes influence oligodendrocyte (OL) differentiation and myelination ability. This artificial axon culture system enables the effective uncoupling of molecular cues from the biophysical properties of the axons, allowing the detailed study of the astrocyte-OL crosstalk. Oligodendrocyte precursor cells (OPCs) were cultured on poly(trimethylene carbonate-co-ε-caprolactone) copolymer electrospun microfibres that served as surrogate axons. This platform was then combined with a previously established tissue engineered glial scar model of astrocytes embedded in 1 % (w/v) alginate matrices, in which astrocyte reactive phenotype was acquired using meningeal fibroblast conditioned medium. OPCs were shown to adhere to uncoated engineered microfibres and differentiate into myelinating OL. Reactive astrocytes were found to significantly impair OL differentiation ability, after six and eight days in a co-culture system. Differentiation impairment was seen to be correlated with astrocytic miRNA release through exosomes. We found significantly reduction on the expression of pro-myelinating miRNAs (miR-219 and miR-338) and an increase in anti-myelinating miRNA (miR-125a-3p) content between reactive and quiescent astrocytes. Additionally, we show that OPC differentiation inhibition could be reverted by rescuing the activated astrocytic phenotype with ibuprofen, a chemical inhibitor of the small rhoGTPase RhoA. Overall, these findings show that modulating astrocytic function might be an interesting therapeutic avenue for demyelinating diseases. The use of these engineered microfibres as an artificial axon culture system will enable the screening for potential therapeutic agents that promote OL differentiation and myelination while providing valuable insight on the myelination/remyelination processes.


Assuntos
Doenças Desmielinizantes , MicroRNAs , Remielinização , Humanos , Astrócitos/metabolismo , Astrócitos/patologia , Remielinização/fisiologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia
2.
Biomaterials ; 283: 121427, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35276617

RESUMO

Therapeutic strategies aimed at overcoming the loss of myelin sheath in central nervous system demyelinating diseases are often unsuccessful due to nescience underlying the mechanisms of remyelination failure. The environment surrounding a demyelination lesion is seen as a hostile terrain, characterized by factors that can inhibit myelin production by oligodendrocytes (OLs). The formation of a glial scar containing reactive astrocytes producing high amounts of altered matrix proteins can compromise OL remyelination. Allied to glial scar, mechanical properties of the tissue are altered. The paradigms in the remyelination failure are changing. We point mechanobiology as a missing key towards unravelling the nature of (de)myelination. Mechanical cues as stiffness, axonal tension or physical constraints are emerging as dictators of tissue homeostasis and pathology. Here we delve into an in-depth characterization of the preeminent models to study mechanobiology events of (de)myelination and remyelination. Alternatives to in vivo systems are provided, either through the exploration of simpler animal models, creation of in vitro models using tissue engineered approaches or through in silico tools. We discuss how bioengineering is being explored to generate relevant models to dissect new mechanobiology mechanisms and identify novel therapeutic targets, being expected to profoundly impact the treatment of demyelinating diseases.


Assuntos
Doenças Desmielinizantes , Remielinização , Animais , Bioengenharia , Biofísica , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Remielinização/fisiologia
3.
Mol Ther Nucleic Acids ; 11: 393-406, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858074

RESUMO

After spinal cord injury (SCI), nerve regeneration is severely hampered due to the establishment of a highly inhibitory microenvironment at the injury site, through the contribution of multiple factors. The potential of antisense oligonucleotides (AONs) to modify gene expression at different levels, allowing the regulation of cell survival and cell function, together with the availability of chemically modified nucleic acids with favorable biopharmaceutical properties, make AONs an attractive tool for novel SCI therapy developments. In this work, we explored the potential of locked nucleic acid (LNA)-modified AON gapmers in combination with a fibrin hydrogel bridging material to induce gene silencing in situ at a SCI lesion site. LNA gapmers were effectively developed against two promising gene targets aiming at enhancing axonal regeneration-RhoA and GSK3ß. The fibrin-matrix-assisted AON delivery system mediated potent RNA knockdown in vitro in a dorsal root ganglion explant culture system and in vivo at a SCI lesion site, achieving around 75% downregulation 5 days after hydrogel injection. Our results show that local implantation of a AON-gapmer-loaded hydrogel matrix mediated efficient gene silencing in the lesioned spinal cord and is an innovative platform that can potentially combine gene regulation with regenerative permissive substrates aiming at SCI therapeutics and nerve regeneration.

4.
Drug Discov Today ; 21(9): 1355-1366, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27178019

RESUMO

Despite the recent progress in the understanding of neurodegenerative disorders, a lack of solid fundamental knowledge on the etiology of many of the major neurodegenerative diseases has made it difficult to obtain effective therapies to treat these conditions. Scientists have been looking to carry out more-human-relevant studies, with strong statistical power, to overcome the limitations of preclinical animal models that have contributed to the failure of numerous therapeutics in clinical trials. Here, we identify currently existing platforms to mimic central nervous system tissues, healthy and diseased, mainly focusing on cell-based platforms and discussing their strengths and limitations in the context of the high-throughput screening of new therapeutic targets and drugs.


Assuntos
Ensaios de Triagem em Larga Escala , Doenças Neurodegenerativas , Animais , Técnicas de Cultura de Células , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA