Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Mol Res ; 16(2)2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28549198

RESUMO

Sugarcane production is strongly influenced by drought, which is a limiting factor for agricultural productivity in the world. In this study, the gene expression profiles obtained by de novo assembly of the leaf transcriptome of two sugarcane cultivars that differ in their physiological response to water deficit were evaluated by the RNA-Seq method: drought-tolerant cultivar (SP81-3250) and drought-sensitive cultivar (RB855453). For this purpose, plants were grown in a greenhouse for 60 days and were then submitted to three treatments: control (-0.01 to -0.015 MPa), moderate water deficit (-0.05 to -0.055 MPa), and severe water deficit (-0.075 to -0.08 MPa). The plants were evaluated 30, 60, and 90 days after the beginning of treatment. Sequencing on an Illumina platform (RNA-Seq) generated more than one billion sequences, resulting in 177,509 and 185,153 transcripts for the tolerant and sensitive cultivar, respectively. These transcripts were aligned with sequences from Saccharum spp, Sorghum bicolor, Miscanthus giganteus, and Arabidopsis thaliana available in public databases. The differentially expressed genes detected during the prolonged period of water deficit permit to increase our understanding of the molecular patterns involved in the physiological response of the two cultivars. The tolerant cultivar differentially expressed a larger number of genes at 90 days, while in the sensitive cultivar the number of differentially expressed genes was higher in 30 days. Both cultivars perceived the lack of water, but the tolerant cultivar responded more slowly than the sensitive cultivar. The latter requires rapid activation of different water-deficit stress response mechanisms for its survival. This rapid activation of metabolic pathways in response to water stress does not appear to be the key mechanism of drought tolerance in sugarcane. There is still much to clarify on the molecular and physiological pattern of plants in response to drought.


Assuntos
Pressão Osmótica , Folhas de Planta/metabolismo , Saccharum/genética , Transcriptoma , Secas , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Saccharum/embriologia
2.
Genet Mol Res ; 15(2)2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27173329

RESUMO

Citrus canker, caused by the Gram-negative bacterium Xanthomonas citri subsp citri (Xac), is a major disease affecting citriculture worldwide, because of the susceptibility of the host and the lack of efficient control methods. Previous studies have reported that some genes of phytopathogenic bacteria possess a consensus nucleotide sequence (TTCGC...N15...TTCGC) designated the "plant-inducible-promoter box" (PIP box) located in the promoter region, which is responsible for activating the expression of pathogenicity and virulence factors when the pathogen is in contact with the host plant. In this study, we mapped and investigated the expression of 104 Xac genes associated with the PIP box sequences using a macroarray analysis. Xac gene expression was observed during in vitro (Xac grown for 12 or 20 h in XAM1 induction medium) or in vivo (bacteria grown in orange leaves for 3 to 5 days) infection conditions. Xac grown in non-induction NB liquid medium was used as the control. cDNA was isolated from bacteria grown under the different conditions and hybridized to the macroarray, and 32 genes differentially expressed during the infection period (in vitro or in vivo induction) were identified. The macroarray results were validated for some of the genes through semi-quantitative RT-PCR, and the functionality of the PIP box-containing promoter was demonstrated by activating b-glucuronidase reporter gene activity by the PIP box-containing promoter region during Xac-citrus host interaction.


Assuntos
Genes Bacterianos , Regiões Promotoras Genéticas , Xanthomonas/genética , Regulação Bacteriana da Expressão Gênica , Mapeamento Físico do Cromossomo , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Xanthomonas/patogenicidade
3.
Br Poult Sci ; 55(6): 795-803, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25358544

RESUMO

1. An experiment was conducted to study the effect of two different diets on zootechnical performance and the major bacterial groups in association with the host mucosa and dispersed in the lumen contents of the small intestine of broiler chickens. 2. The two experimental diets were maize or sorghum-based. In addition to the total bacteria, bacterial groups belonging to the Enterobacteriaceae (Enterococcus and Lactobacillus) were quantified by real-time PCR. 3. There were no differences in body weight gain and feed intake, but feed conversion ratio increased for sorghum-fed broilers at 21 and 42 d of age. 4. The Enterococcus group decreased in all gut segments from 7 to 42 d, while the Lactobacillus group increased in both ecosystems. In the ileal mucosa, the enterobacterial counts decreased from 7 to 42 d in the maize-based diet, but remained stable in the sorghum-based diet. 5. The results shed light on the spatial and temporal distribution of bacterial groups that play important physiological roles in the small intestine of chickens. Specifically, the increased Enterobacteria population in the ileum is consistent with the relatively poor feed conversion in sorghum-fed broilers.


Assuntos
Ração Animal , Galinhas/microbiologia , Intestinos/microbiologia , Microbiota , Sorghum , Zea mays , Animais , Galinhas/fisiologia , Dieta/veterinária , Masculino , Microbiota/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...