Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37507936

RESUMO

Epilepsy is a neurological disorder characterized by epileptic seizures resulting from neuronal hyperexcitability, which may be related to failures in Na,K-ATPase activity and oxidative stress participation. We conducted this study to investigate the impact of antioxidant therapy on oxidative stress, Na,K-ATPase activity, seizure factors, and mortality in rodent seizure/epilepsy models induced by pentylenetetrazol (PTZ), pilocarpine (PILO), and kainic acid (KA). After screening 561 records in the MEDLINE, EMBASE, Web of Science, Science Direct, and Scopus databases, 22 were included in the systematic review following the PRISMA guidelines. The meta-analysis included 14 studies and showed that in epileptic animals there was an increase in the oxidizing agents nitric oxide (NO) and malondialdehyde (MDA), with a reduction in endogenous antioxidants reduced glutathione (GSH) and superoxide dismutase (SO). The Na,K-ATPase activity was reduced in all areas evaluated. Antioxidant therapy reversed all of these parameters altered by seizure or epilepsy induction. In addition, there was a percentage decrease in the number of seizures and mortality, and a meta-analysis showed a longer seizure latency in animals using antioxidant therapy. Thus, this study suggests that the use of antioxidants promotes neuroprotective effects and mitigates the effects of epilepsy. The protocol was registered in the Prospective Register of Systematic Reviews (PROSPERO) CRD42022356960.

2.
Biomedicines ; 11(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36979899

RESUMO

A lipopolysaccharide (LPS)-induced neuroinflammation rat model was used to study the effects of ouabain (OUA) at low concentrations, which can interact with the Na,K-ATPase, causing the modulation of intracellular signalling pathways in the Central Nervous System. Our study aimed to analyse the effects of OUA on glutamate transport in the hippocampus of rats with LPS-induced neuroinflammation. Adult male Wistar rats were divided into four groups: OUA (1.8 µg/kg), saline (CTR), LPS (200 µg/kg), and OUA + LPS (OUA 20 min before LPS). The animals were sacrificed after 2 h, and the hippocampus was collected for analysis. After treatment, we determined the activities of Na,K-ATPase and glutamine synthetase (GS). In addition, expression of the α1, α2, and α3 isoforms of Na,K-ATPase and the glutamate transporters, EAAT1 and EAAT2, were also analysed. Treatment with OUA caused a specific increase in the α2 isoform expression (~20%), whereas LPS decreased its expression (~22%), and treatment with OUA before LPS prevented the effects of LPS. Moreover, LPS caused a decrease of approximately 50% in GS activity compared with that in the CTR group; however, OUA pre-treatment attenuated this effect of LPS. Notably, it was found that treatment with OUA caused an increase in the expression of EAAT1 (~30%) and EAAT2 (~25%), whereas LPS caused a decrease in the expression of EAAT1 (~23%) and EAAT2 (~25%) compared with that in the CTR group. When treated with OUA, the effects of LPS were abrogated. In conclusion, the OUA pre-treatment abolished the effect caused by LPS, suggesting that this finding may be related to the restoration of the interaction between FXYD2 and the studied membrane proteins.

3.
J Membr Biol ; 254(2): 189-199, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33598793

RESUMO

Our study aimed to investigate the effects of the new cardiotonic steroid BD-15 (γ-benzylidene derivatives) in the behavioral parameters, oxidative stress and the Na, K-ATPase activity in the hippocampus, prefrontal cortex and heart from rats to verify the safety and possible utilization in brain disorders. For this study, groups of male Wistar rats were used after intraperitoneal injection of 20, 100 and 200 µg/Kg with BD-15. The groups were treated for three consecutive days and the control group received 0.9% saline. BD-15 did not alter behavior of rats treated with different doses. An increase in the specific α2,3-Na, K-ATPase activity was observed for all doses of BD-15 tested in the hippocampus. However, in the prefrontal cortex, only the dose of 100 µg/Kg increased the activity of all Na, K-ATPase isoforms. BD-15 did not cause alteration in the lipid peroxidation levels in the hippocampus, but in the prefrontal cortex, a decrease of lipid peroxidation (~ 25%) was observed. In the hippocampus, GSH levels increased with all doses tested, while in the prefrontal cortex no changes were found. Subsequently, when the effect of BD-15 on cardiac tissue was analyzed, no changes were observed in the tested parameters. BD-15 at a dosage of 100 µg/Kg proved to be promising because it is considered therapeutic for brain disorders, since it increases the activity of the α3-Na, K-ATPase in the hippocampus and prefrontal cortex, as well as decreasing the oxidative stress in these brain regions. In addition, this drug did not cause changes in the tissues of the heart and kidneys, preferentially demonstrating specificity for the brain.


Assuntos
Compostos de Benzilideno/farmacologia , Digoxina/farmacologia , Hipocampo/enzimologia , Córtex Pré-Frontal/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Encefalopatias , Coração/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar
4.
Physiol Behav ; 211: 112675, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31493415

RESUMO

It is known that a single session of high-intensity interval exercise (HIIE) contributes to the increase of the reactive species of oxygen, accompanied by a greater antioxidant activity. However, it is poorly understood if a single session of HIIE has similar effects on the brain tissue. This study evaluated the effects of a single HIIE on the hippocampal redox status. Sixteen males Wistar rats were allocated into HIIE (n = 8) and control (n = 8) groups. Maximum oxygen consumption (VO2max) was evaluated using a treadmill at 10° inclination in a metabolic chamber. HIIE group was submitted to a single run on the treadmill composed by 10 bouts of high-intensity exercise of 1 min each (85-100% of VO2max), at 28 m/min, 10° inclination, interspersed by 2 min of active recovery, at 10 m/min, with no inclination. Analysis of the redox status at the hippocampus were conducted 24 h after the HIIE session. It was not identified lipid peroxidation in the hippocampus of the HIIE group (Control 1.9 ±â€¯0.31, vs HIIT 2.2 ±â€¯0.53 nmol MDA/mg protein (p > .05). However, the activity of the superoxide dismutase (Control 2.614 ±â€¯0.225 vs HIIT 3.718 ±â€¯0.4589 U/mg protein), and the non-enzymatic total antioxidant capacity (Control 1584 ±â€¯75.88 vs HIIT 1984 ±â€¯137.7 nM FeSO4/mg protein) were enhanced (p < .05) after the exercise session. These results indicate that the antioxidant mechanisms are enhanced even after a single session of HIIE. A single session of HIIE does not induce lipid peroxidation and improves the antioxidant defenses in Wistar rats' hippocampus.


Assuntos
Antioxidantes/metabolismo , Treinamento Intervalado de Alta Intensidade , Hipocampo/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Peroxidação de Lipídeos/fisiologia , Masculino , Oxirredução , Consumo de Oxigênio/fisiologia , Ratos , Ratos Wistar
5.
Front Neurol ; 9: 927, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524352

RESUMO

In patients with temporal lobe epilepsy (TLE), presurgical magnetic resonance imaging (MRI) often reveals hippocampal atrophy, while neuropathological assessment indicates the different types of hippocampal sclerosis (HS). Different HS types are not discriminated in MRI so far. We aimed to define the volume of each hippocampal subfield on MRI manually and to compare automatic and manual segmentations for the discrimination of HS types. The T2-weighted images from 14 formalin-fixed age-matched control hippocampi were obtained with 4.7T MRI to evaluate the volume of each subfield at the anatomical level of the hippocampal head, body, and tail. Formalin-fixed coronal sections at the level of the body of 14 control cases, as well as tissue samples from 24 TLE patients, were imaged with a similar high-resolution sequence at 3T. Presurgical three-dimensional (3D) T1-weighted images from TLE went through a FreeSurfer 6.0 hippocampal subfield automatic assessment. The manual delineation with the 4.7T MRI was identified using Luxol Fast Blue stained 10-µm-thin microscopy slides, collected at every millimeter. An additional section at the level of the body from controls and TLE cases was submitted to NeuN immunohistochemistry for neuronal density estimation. All TLE cases were classified according to the International League Against Epilepsy's (ILAE's) HS classification. Manual volumetry in controls revealed that the dentate gyrus (DG)+CA4 region, CA1, and subiculum accounted for almost 90% of the hippocampal volume. The manual 3T volumetry showed that all TLE patients with type 1 HS (TLE-HS1) had lower volumes for DG+CA4, CA2, and CA1, whereas those TLE patients with HS type 2 (TLE-HS2) had lower volumes only in CA1 (p ≤ 0.038). Neuronal cell densities always decreased in CA4, CA3, CA2, and CA1 of TLE-HS1 but only in CA1 of TLE-HS2 (p ≤ 0.003). In addition, TLE-HS2 had a higher volume (p = 0.016) and higher neuronal density (p < 0.001) than the TLE-HS1 in DG + CA4. Automatic segmentation failed to match the manual or histological findings and was unable to differentiate TLE-HS1 from TLE-HS2. Total hippocampal volume correlated with DG+CA4 and CA1 volumes and neuronal density. For the first time, we also identified subfield-specific pathology patterns in the manual evaluation of volumetric MRI scans, showing the importance of manual segmentation to assess subfield-specific pathology patterns.

6.
J Neurochem ; 131(1): 65-73, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24903976

RESUMO

The role of physical exercise as a neuroprotective agent against ischemic injury has been extensively discussed. Nevertheless, the mechanisms underlying the effects of physical exercise on cerebral ischemia remain poorly understood. Here, we investigate the hypothesis that physical exercise increases ischemic tolerance by decreasing the induction of cellular apoptosis and glutamate release. Rats (n = 50) were submitted to a swimming exercise protocol for 8 weeks. Hippocampal slices were then submitted to oxygen and glucose deprivation. Cellular viability, pro-apoptotic markers (Caspase 8, Caspase 9, Caspase 3, and apoptosis-inducing factor), and glutamate release were analyzed. The percentage of cell death, the amount of glutamate release, and the expression of the apoptotic markers were all decreased in the exercise group when compared to the sedentary group after oxygen and glucose deprivation. Our results suggest that physical exercise protects hippocampal slices from the effects of oxygen and glucose deprivation, probably by a mechanism involving both the decrease of glutamatergic excitotoxicity and apoptosis induction.


Assuntos
Fator de Indução de Apoptose/metabolismo , Caspases/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Peso Corporal/fisiologia , Hipóxia Celular/fisiologia , Sobrevivência Celular/fisiologia , Masculino , Técnicas de Cultura de Órgãos , Condicionamento Físico Animal/métodos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...